Акционерная компания по транспорту нефти "Транснефть"

(ОАО АК "Транснефть")

 

Федеральный горный и промышленный надзор России

(Госгортехнадзор России)

 

 

МЕТОДИЧЕСКОЕ РУКОВОДСТВО ПО ОЦЕНКЕ СТЕПЕНИ РИСКА АВАРИЙ

НА МАГИСТРАЛЬНЫХ НЕФТЕПРОВОДАХ

 

Руководящий документ

 

ББК 39.77

М54

 

 

Методическое руководство предназначено для оценки риска аварии на линейной части магистральных нефтепроводов, в том числе для прогнозирования частоты возникновения возможных аварий, объемов разливов нефти, а также масштабов компенсационных выплат за загрязнение нефтью окружающей природной среды.

Методическое руководство разработано НТЦ "Промышленная безопасность" по заказу ОАО "АК "Транснефть" в соответствии с Мероприятиями по выполнению решений Комиссии Правительства Российской Федерации по оперативным вопросам (протокол от 13 февраля 1996 № 3).

 

 

СОГЛАСОВАНО

письмом Госгортехнадзора России

от 07.07.99 № 10-03/418

 

УТВЕРЖДЕНО

приказом АК "Транснефть"

от 30.12.99 № 152.

 

 

ВВЕДЕНИЕ

 

Методическое руководство по оценке степени риска аварий на магистральных нефтепроводах предназначено для оценки (прогноза) частоты аварийных утечек из нефтепроводов, объемов аварийных разливов и потерь нефти, а также для оценки компенсационных выплат за загрязнение нефтью земель, водных объектов и атмосферного воздуха при авариях на линейной части магистрального нефтепровода.

Полученные оценки риска аварий нефтепроводов дают основу для разработки приоритетных мероприятий по повышению промышленной безопасности магистральных нефтепроводов, в том числе организации диагностических и ремонтных работ на линейной части нефтепроводов.

Основу Методического руководства составляют нормативные документы Госгортехнадзора России (РД 08-120-96, РД 08-204-98, РД 03-357-00), Госкомэкологии России (в области оценки ущерба окружающей природной среде от аварий), Минтопэнерго России и АК "Транснефть" (РД Методика оценки ущерба окружающей природной среде при авариях на магистральных нефтепроводах), научные разработки НТЦ "Промышленная безопасность", ВНИИГАЗ, МГУ, АЦ ГИН РАН, ФГЦС "Экология".

Методическое руководство разработано НТЦ "Промышленная безопасность" авторским коллективом в составе: М.В. Лисанов, В.Ф. Мартынюк, А.С. Печеркин, В.И. Сидоров, Е.В. Ханин (НТЦ "Промышленная безопасность"), Л.Н. Морозова, И.В. Сахаров, А.Н. Чижов (АЦ ГИН РАН), А.А. Швыряев (МГУ им. М.В. Ломоносова), В.С. Сафонов (ВНИИГАЗ), С.И. Сумской (МИФИ), А.В. Явелов, И.А. Уткина (ФЦГС "Экология"), В.М. Зюзина (САПР ЦИАМ).

В разработке методического руководства принимали участие Ю.В. Лисин, В.А. Галкин (АК "Транснефть").

 

1. ОБЩИЕ ПОЛОЖЕНИЯ

 

1.1. Методическое руководство по оценке степени риска аварий на магистральных нефтепроводах (далее Методическое руководство) предназначено для оценки (прогноза) частоты аварийных утечек нефти вдоль трассы нефтепровода (технологический риск), оценки воздействия аварийных разливов нефти на различные компоненты окружающей природной среды (экологический риск) и проведения на основе полученных результатов мер по повышению промышленной и экологической безопасности.

1.2. Методическое руководство предназначено для специалистов АК "Транснефть", Госгортехнадзора России, проектных и экспертных организаций, занимающихся транспортировкой нефти и нефтепродуктов.

1.3. Методическое руководство используется:

- при проведении анализа опасностей и риска аварий магистральных нефтепроводов;

- при разработке деклараций промышленной безопасности опасных производственных объектов магистральных нефтепроводов;

- при оценке воздействия на окружающую среду магистральных нефтепроводов;

- при проектировании, строительстве и эксплуатации магистральных нефтепроводов;

- при разработке регламента обслуживания и ремонта магистральных нефтепроводов;

- при страховании ответственности за причинение вреда в случае аварии на магистральном нефтепроводе.

Полученные результаты могут быть использованы по усмотрению Заказчика при проведении конкретных работ.

1.4. В настоящем Методическом руководстве в качестве аварийных разливов нефти понимаются разливы нефти объемом более 1 м3 или загрязнение любого водотока, реки, озера, водохранилища или любого другого водоема при условии, что оно превысило установленные стандарты качества воды для таких водоемов.

1.5. В Методическом руководстве окружающая природная среда представлена в виде системы, состоящей из следующих основных компонентов: земли, водных объектов, атмосферного воздуха.

Величина ожидаемого ущерба, который может быть нанесен негативным воздействием на окружающую среду, определяется как сумма ожидаемых ущербов для различных компонентов природной среды (в форме платы за сверхнормативное загрязнение природной среды нефтью и нефтепродуктами).

Расчет ожидаемого ущерба вследствие разлива нефти при авариях на магистральном нефтепроводе производится на основании действующих документов, регулирующих порядок начисления и уплаты платежей за загрязнение окружающей среды.

1.6. Методическое руководство целесообразно применять на практике с помощью специально разработанного программного обеспечения, в основу которого положено данное руководство.

 

2. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ, СОКРАЩЕНИЯ

И УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

 

2.1. Термины и определения

 

Авария — разрушение сооружений и (или) технических устройств, применяемых на опасном производственном объекте, неконтролируемые взрыв и (или) выброс опасных веществ (Федеральный закон Российской Федерации "О промышленной безопасности опасных производственных объектов").

Авария па магистральном трубопроводе авария на трассе трубопровода, связанная с выбросом и выливом под давлением опасных химических или пожаровзрывоопасных веществ, приводящая к возникновению техногенной чрезвычайной ситуации (ГОСТ Р 22.0.05-94).

Анализ риска или риск-анализ процесс идентификации опасностей и оценки риска для отдельных лиц или групп населения, имущества или окружающей среды. Анализ риска заключается в использовании всей доступной информации для идентификации (выявления) опасностей и оценки риска аварии и связанных с ней ситуаций (РД 08-120-96).

Идентификация опасности процесс выявления и признания, что опасность существует; определение ее характеристик (РД 08-120-96). Является одним из этапов анализа риска (оценки степени риска) аварий на нефтепроводах и включает сбор информации, деление (разбивку) трассы нефтепровода на участки и получение предварительных оценок опасности.

Негативное воздействие на окружающую природную среду — любые прямые или косвенные, немедленные или возникшие через какое-то время, вредные последствия аварии, в частности, для:

а) людей, флоры и фауны;

б) почвы, воды, воздуха и ландшафта;

в) взаимосвязи между факторами, указанными в подпунктах а) и б).

Вред окружающей природной среде негативные изменения и последствия снижения качества природных ресурсов и среды обитания человека, биологического разнообразия и биопродуктивности природных компонентов, в конечном итоге — снижение эколого-ресурсного потенциала территорий. Понятие "вред" включает в себя прямой и косвенный ущерб, а также убыток.

Опасность источник потенциального ущерба, вреда или ситуация с возможностью нанесения ущерба (РД 08-120-96).

Потеря нефти количество нефти, равной разнице между объемом нефти, вытекшей из поврежденного трубопровода, и объемом нефти, собранной в результате работ по ликвидации аварий и ее последствий.

Риск или степень риска сочетание частоты (или вероятности) возникновения и последствий определенного опасного события. Понятие риска всегда включает два элемента: частота, с которой осуществляется опасное событие, и последствия этого события (РД 08-120-96). Риск оценивается соответствующими показателями, например, ожидаемыми уровнями негативных последствий аварий в годовом исчислении (ожидаемым ущербом, вероятностью возникновения аварий с определенными последствиями и т. п.).

Риск экологический вероятность возникновения неблагоприятных для природной среды и человека последствий осуществления хозяйственной и иной деятельности. (Инструкция по экологическому обоснованию хозяйственной и иной деятельности, утвержденная Минприроды России 29.12.95).

Оценка риска или оценка степени риска процесс, используемый для определения степени риска анализируемой опасности для здоровья человека, имущества или окружающей среды. Оценка риска включает анализ частоты, анализ последствий и их сочетание.

Ущерб выражение в денежной форме результатов вредного воздействия аварий и их последствий.

Убытки материальные потери и финансовые издержки (прямые и косвенные) природопользователей (граждан, предприятий, учреждений и организаций независимо от форм собственности), возникающие в результате ликвидации экологических последствий аварии и восстановления нарушенного состояния природной среды (отдельных ее компонентов), потери здоровья, порчи имущества и продукции природопользователей, упущенной выгоды от изменения состояния окружающей среды и природных ресурсов и т. п.

 

2.2. Используемые сокращения

 

КИТ

— контрольно-измерительные точки;

КР

— климатический район по ГОСТ 16350-80;

РНУ (РУМН)

— районное нефтепроводное управление;

МН

— магистральный нефтепровод;

НПС

— нефтеперекачивающая станция;

ЭХЗ

— электрохимическая защита трубопровода;

СанПиН

— санитарные правила и нормы;

СМР

— строительно-монтажные работы;

СНиП

— строительные нормы и правила;

ПОС

— проект организации строительных работ;

ППР

— проект производства строительных работ;

ПТЭ

— правила технической эксплуатации нефтепровода;

РД

— рабочая документация на нефтепровод;

ТР

— технический регламент нефтепровода;

ТхПс

— технический паспорт участка нефтепровода.

 

2.3. Основные условные обозначения

 

Гpi — группы факторов воздействия, определяющих вероятность возникновения аварии;

Пi — градации загрязненности атмосферы хлоридами по ГОСТ 9.039-74;

Сi — градации загрязненности атмосферы сернистым газом и хлоридами по ГОСТ 9.039-74;

В* — средняя балльная оценка трассы МН, полученная на основе балльной оценки каждого участка трассы;

Fn балльная оценка n-го участка;

Вij балльная оценка j-го фактора в i-ой группе (по 10-балльной шкале);

Вm тип подводного перехода МН по классификации СНиП 2.05.06-85*;

Fij — фактор влияния (i — номер группы, j — номер фактора в группе);

рi доля i-ой группы факторов;

qij доля j-го фактора в i-ой группе;

Ннас — плотность населения в трехкилометровой полосе вдоль трассы трубопровода, чел/км2;

hпг — первоначальная глубина почвенного горизонта, см;

Ji — количество факторов влияния в i-ой группе;

I — количество групп;

Kвз — коэффициент пересчета величины ущерба в зависимости от времени самовосстановления почв;

Kзд коэффициент пересчета ущерба в зависимости от изменения степени деградации почв и земель;

Kи — коэффициент индексации величины ущерба в соответствии с уровнем индекса-дефлятора по отраслям экономики;

Kп опадо-подстилочный коэффициент;

Kсв — процент охвата сварных стыков контролем физическими методами;

Kсб  — процент сбора вылившейся нефти службами эксплуатирующей организации;

Kу коэффициент увлажнения;

Kупг — уменьшение мощности почвенного слоя, %;

Lн протяженность участка нефтепровода, заключенного между двумя НПС, км;

Lкв расстояния между катодными выводами при проведении контроля ЭХЗ, км;

Мз средняя масса потерь нефти, т;

Мр масса нефти, попавшей в водные объекты, т;

Мрз — масса нефти, загрязнившей водные объекты, т;

Рдоп допустимое давление в трубопроводе, Па;

Рисп испытательное давление в трубопроводе, Па;

Рраб — рабочее давление в трубопроводе, Па;

Рфакт — фактическое давление в трубопроводе, Па;

Р1 — давление на выходе головной НПС, Па;

Qmax максимальная подача насосного агрегата, м3/с;

Q0 — подача насосного агрегата, м3/с;

Q° расход нефти через аварийное отверстие, м3/с;

Qi суммарные веса основных характеристик компонентов биогеоценоза;

R один из показателей риска (степени риска);

Rd показатель риска для оценки ожидаемого ущерба от загрязнения окружающей природной среды, руб/год;

,  и  — ожидаемый ущерб от загрязнения нефтью соответственно водных объектов, земель и атмосферы, руб/год;

,  и   — удельный экологический ущерб (в расчете на 1 т вытекшей нефти) соответственно от загрязнения поверхностных вод, почвы и атмосферы, руб/(т(год);

Ret показатель риска, характеризующий эффективную площадь выведения из естественного состояния сухопутных ландшафтов, м2/год;

Rer показатель риска, характеризующий эффективную площадь выведения из естественного состояния водных объектов, м2/год;

Rst показатель риска для оценки ожидаемой площади загрязнения сухопутных ландшафтов, м2/год;

Rsr показатель риска для оценки ожидаемой площади загрязнения водных объектов, м2/год;

Rv показатель риска для оценки ожидаемого объема потерь нефти при аварийных разливах из нефтепровода, м3/год;

Re число Рейнольдса;

Sз площадь загрязнения поверхности земли, м2;

Sp площадь загрязнения водной поверхности, м2;

Sдг площадь деградированных земель, м2;

Sэфф эффективная площадь дефектного отверстия в нефтепроводе, м2;

S0 = pD2/4 — площадь поперечного сечения трубопровода, м2;

D условный диаметр нефтепровода, см;

tв — температура воздуха, °С;

tисп — количество лет, прошедших с момента последнего испытания повышенным давлением;

tкит — количество лет, прошедших с момента проведения последних измерений защищенности трубопровода с помощью выносного электрода в КИТ;

tн — температура нефти, °С;

tсвз — количество лет, необходимых для самовосстановления загрязненных земель;

tсво — время самовосстановления водных объектов;

tсн — количество лет, прошедших с момента проведения последних исследований трубопровода с помощью снарядов-дефектоскопов;

tэксп — продолжительность эксплуатации участка трубопровода, лет;

V — общий объем вытекшей нефти, м3;

Vз — объем нефти, загрязнившей землю, м3;

Vp объем нефти, попавшей в водные объекты, м3;

V1 — объем нефти, вытекшей в напорном режиме с момента повреждения до остановки перекачки, м3;

V2 — объем нефти, вытекшей в безнапорном режиме с момента остановки перекачки до закрытия задвижек, м3;

Vэфф — ожидаемый годовой объем нефти, оставшейся на месте разлива после завершения ликвидационных работ, м3;

Zм геодезическая отметка точки аварии, м;

Z1 — геодезическая отметка начала участка нефтепровода, м;

Z2 — геодезическая отметка конца участка нефтепровода, м;

hгр толщина слоя грунта над верхней образующей трубопровода, м;

 — координата границы n-го участка магистрали при анализе фактора Fij, км;

 — координата границы n-го участка для m-го природно-антропогенного объекта, км;

N — количество участков на трассе МН;

hдоп — толщина слоя грунта, эквивалентная толщине дополнительного механического защитного покрытия трубопровода, м;

hв — средняя глубина водоемов в створах действующих подводных переходов, м;

hm — глубина заложения нефтепровода, м;

h* перепад напора в точке истечения через отверстие, м;

kвл интегральный коэффициент, показывающий во сколько раз локальная интенсивность аварий отличается от среднестатистической для данной трассы ;

kD коэффициент влияния технологических характеристик материала трубопровода с различными условными диаметрами;

t1 — интервал времени с момента возникновения аварии до остановки перекачки, мин;

t2 — интервал времени с момента остановки перекачки, до закрытия задвижек, мин;

g ускорение силы тяжести, м/с2;

qиз удельная величина испарения с поверхности нефтяного пятна на земле, г/м2;

qир удельная величина испарения с поверхности нефтяного пятна на воде, г/м2;

ri — разряды основных характеристик компонентов биогеоценоза;

ln — удельная частота (вероятность) аварий на участке МН, аварий/(км×год);

lср — среднестатистическая по отрасли интенсивность аварий за последние 5 лет, аварий/(1000 км×год);

l среднестатистическая частота аварий (интенсивность) для данной трассы МН, аварий/(1000 км×год);

 — удельная частота аварий на участке с возникновением дефектных отверстий определенного размера (по эффективной площади дефектного отверстия в нефтепроводе Sэфф), аварий/ (км×год);

rг — удельное электросопротивление грунта, Ом×м;

fкит — частота проведения измерений в контрольно-измерительных точках (КИТ), количество раз/год;

dрасч — расчетное значение толщины стенки трубы, мм;

dфакт — наименьшее (в пределах данного участка) фактическое значение толщины стенки трубы, см;

r — плотность нефти, т/м3;

rв — плотность воздуха, кг/м3.

 

3. МЕТОДОЛОГИЯ ОЦЕНКИ СТЕПЕНИ РИСКА АВАРИЙ НА МН

 

3.1. Основные принципы оценки степени риска аварий вытекают из положений нормативных документов РД 08-120-96 "Методические указания по проведению анализа риска опасных промышленных объектов" (утв. Госгортехнадзором России, 12.07.1996 г.) и РД "Методика определения ущерба окружающей природной среде при авариях на магистральных нефтепроводах" (утв. Минтопэнерго России, 01.11.1995 г.).

3.2. Оценка степени риска линейной части МН проводится на основе идентификации опасностей и оценки риска отдельных участков, характеризующихся примерно одинаковым распределением удельных показателей риска по всей длине участка. Длина каждого участка трассы МН может быть скорректирована с учетом возможных последствий аварий (например, по наличию на прилегающей территории чувствительных к загрязнению компонентов окружающей природной среды).

3.3.Основные последствия при авариях, сопровождающихся разливом нефти, связаны с негативным воздействием нефти на окружающую природную среду. В связи с этим любой линейный участок МН представляет собой опасность и должен оцениваться определенными показателями риска.

3.4. Оценка степени риска в составе Методического руководства включает:

- прогноз частоты аварийных утечек нефти на линейной части МН и оценку объемов утечки и потерь нефти (технологический риск);

- оценку последствий аварийных утечек нефти для различных компонентов окружающей природной среды;

- проведение (на основе полученных оценок риска) ранжирования участков трассы нефтепровода по степени опасности и приоритетности мер безопасности (управление риском).

3.4.1. Прогноз частоты аварийных утечек из МН проводится с учетом факторов влияния, которые объединены в следующие группы (приложение 2):

- внешние антропогенные воздействия;

- коррозия;

- качество производства труб;

- качество строительно-монтажных работ;

- конструктивно-технологические факторы;

- природные воздействия;

- эксплуатационные факторы;

- дефекты металла трубы и сварных швов.

Влияние факторов вышеперечисленных групп для каждого участка оценивается методом балльной оценки по десятибалльной шкале. Диапазон изменения и вклад каждого фактора в обобщенную балльную оценку определяется путем суммирования балльных оценок каждого фактора с помощью "весовых коэффициентов". Разработана методика оценки частоты аварии в предположении, что вероятность возникновения аварии пропорциональна величине обобщенной балльной оценки.

3.4.2. Оценка последствий аварийных утечек нефти для различных сценариев аварий включает определение:

- объемов разлива и потерь нефти;

- площади загрязнения сухопутных ландшафтов и водных объектов;

- экологического ущерба, как суммы компенсаций за загрязнение компонентов природной среды;

- ущерба за уничтожение и негативные последствия для животного и растительного мира.

3.5. Для выбранных участков производятся расчеты показателей риска, количество и вид которых зависят от поставленных целей и задач по оценке степени риска. Перечень и источники необходимой информации приведены в приложении 1.

3.6. С помощью Методического руководства оцениваются показатели риска, характеризующие:

- удельную (локальную) частоту аварийных утечек из нефтепровода (n, определяемую на основе статистических данных по авариям на МН и балльной оценки технического состояния нефтепровода согласно приложениям 2 и 5;

- частоту образования дефектного отверстия в зависимости от его площади Sэфф (приложение 3);

- ожидаемые среднегодовые потери нефти за счет аварийных разливов Rv (объем или стоимость потерь) (приложение 4);

- ожидаемые среднегодовые площади загрязнения сухопутных ландшафтов Rst и водных объектов Rsr (приложение 4);

- ожидаемый среднегодовой экологический ущерб, как сумма штрафных санкций за загрязнение компонентов природной среды Rd (приложение 4);

- выведенные из естественного состояния эффективные площади сухопутных ландшафтов Ret и водных объектов Rer, которые определяются на основе частоты аварий, средней площади разлива нефти и времени самовосстановления загрязненных компонентов природной среды (приложения 4, 6, 7).

3.7. Полученные показатели риска участков трассы МН используются для выявления приоритетов в мероприятиях обеспечения безопасности и выбора оптимальной стратегии технического обслуживания, диагностики и ремонта трубопровода. Кроме того, на основе анализа распределения показателей риска могут быть выбраны участки трассы МН, для которых необходимо более точно оценить показатели риска и разработать рекомендации.

 

4. ЭТАПЫ ОЦЕНКИ СТЕПЕНИ РИСКА АВАРИЙ

НА МАГИСТРАЛЬНЫХ НЕФТЕПРОВОДАХ

 

Оценка степени риска аварий на МН проводится в 4 этапа. Схема оценки степени риска приведена на рис. 1, в нее входят следующие этапы:

1. Планирование и организация работ.

2. Идентификация опасностей.

3. Оценка риска аварий.

4. Разработка рекомендаций по управлению риском.

4.1. На этапе "Планирование и организация работ" необходимо:

1) описать причины и проблемы, которые вызвали необходимость проведения оценки риска МН (декларирование промышленной безопасности, оценка воздействия на окружающую природную среду, требования органов местного самоуправления и пр.);

2) четко определить цели и задачи, в том числе, выбрать показатели риска, которые будут оцениваться; указать ограничения исходных данных, финансовых ресурсов и другие возможности, определяющие глубину, полноту и детальность анализа;

3) выбрать методы и по возможности определить критерии приемлемого риска (по согласованию с Заказчиком);

4) определить и описать возможные источники информации о состоянии МН и дать его общее описание;

5) подобрать необходимую группу исполнителей для проведения работ по оценке степени риска; оценить стоимость работ по оценке степени риска аварии МН; указать управленческие решения, которые могут быть приняты по управлению риском.

4.2. На этапе "Идентификация опасностей" необходимо:

1) осуществить сбор и анализ информации в соответствии с приложением 1;

2) произвести деление линейной части МН на участки;

3) выполнить анализ факторов, влияющих на риск, а также произвести (при необходимости) предварительные оценки опасностей.

 

 

 

 

1. ПЛАНИРОВАНИЕ И ОРГАНИЗАЦИЯ РАБОТ

 

1.1. Описание

 

1.2. Определе-

 

1.3. Выбор

 

1.4. Определение

 

1.5. Подбор

 

проблемы

 

ние целей,

задач

 

методов, критериев

 

источников информации

 

исполнителей

 

 

 

2. ИДЕНТИФИКАЦИЯ ОПАСНОСТЕЙ

 

2.1. Сбор информации

 

2.2. Деление трассы

 

2.3. Предварительные

 

 

 

 

на участки

 

оценки опасности

 

 

 

3. ОЦЕНКА РИСКА АВАРИЙ

 

3.1. ОЦЕНКА ЧАСТОТЫ УТЕЧЕК НЕФТИ ДЛЯ УЧАСТКА НЕФТЕПРОВОДА

 

 

3.2. ОЦЕНКА ПОСЛЕДСТВИЙ УТЕЧЕК НЕФТИ ДЛЯ УЧАСТКА НЕФТЕПРОВОДА

 

 

 

 

 

 

 

 

3.1.1. Балльная оценка коэффициента влияния kвл

 

 

 

 

3.2.1. Расчет возможных объемов аварийных утечек

 

 

 

 

 

 

 

 

 

нефти, площадей загрязнения

 

 

 

 

 

 

3.1.2. Определение локальной частоты аварийных утечек

нефти ln

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.3. Определение частоты

 

 

 

 

3.2.2. Определение

 

 

 

 

 

 

образования дефектного

 

 

 

 

экономического

 

 

 

 

 

 

отверстия в зависимости

 

 

 

 

ущерба от аварии

 

 

 

 

 

 

от его площади Sэфф

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. ОЦЕНКА СТЕПЕНИ РИСКА ДЛЯ УЧАСТКА НЕФТЕПРОВОДА

 

 

 

 

 

 

3.3.1. По среднегодовым объемам утечек нефти (м3/год)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.2. По ожидаемому экономическому ущербу (руб/год)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4. ОЦЕНКА РИСКА АВАРИЙ ДЛЯ ВСЕЙ ТРАССЫ НЕФТЕПРОВОДА

 

 

 

 

 

 

 

 

3.4.1. Анализ и обобщение оценки риска каждого участка МН

 

 

 

 

 

 

 

 

 

3.4.2. Ранжирование участков по показателям риска

 

 

 

 

 

 

 

 

 

4. РАЗРАБОТКА РЕКОМЕНДАЦИЙ ПО УПРАВЛЕНИЮ РИСКОМ

 

Рис. 1. Схема проведения анализа риска аварий на МН

 

4.2.1. Предварительная оценка опасностей производится на каждом отдельном участке трассы. Возможна первоначальная оценка для более крупных участков трассы в зависимости от поставленных целей при оценке риска. При этом:

1) границами участка могут быть месторасположение задвижек, насосных станций или места резкого изменения какого-либо значимого фактора (например, подводный переход, пересечение с транспортной коммуникацией, особенность рельефа местности, наличие населенного пункта и пр.);

2) примерная зона влияния возможных аварий нефтепроводов на компоненты окружающей природной среды колеблется от 200 м (для наземного участка линейной части МН) до 3 км (для перехода через водную преграду). Ориентировочное значение длины сухопутного участка равно 1¸3 км, при пересечении МН водных объектов длина участка соответствует протяженности перехода через водную преграду. Увеличение числа участков повышает точность оценки показателей риска вдоль линейной части, однако, может привести к увеличению стоимости работ вследствие дополнительных затрат на сбор и обработку необходимой информации. Поэтому, необходимо оптимизировать длину участка в соответствии с выбранными критериями.

4.3. На этапе "Оценка риска аварий" необходимо провести:

- для каждого участка трассы МН:

1) оценку частоты утечек нефти, в том числе частоты образования дефектного отверстия в зависимости от величины его площади Sэфф;

2) оценку последствий аварий (возможных объемов разливов, площадей загрязнения, экономического ущерба, экологических показателей по времени самовосстановления компонентов окружающей природной среды);

3) оценку степени риска по выбранным показателям риска;

- для всей трассы МН:

1) анализ и обобщение оценки риска каждого участка;

2) ранжирование участков по показателям риска.

4.3.1. Оценка частоты аварийных утечек из нефтепровода приведена в приложении 2, оценка последствий аварий (объем разлива и площадь загрязнения) — в приложении 3, оценка показателей риска — в приложении 4, оценка экологического ущерба — в приложениях 4, 6, 7.

4.3.2. После завершения оценки риска каждого n-го участка трассы строят зависимость для различных показателей риска R вдоль всей трассы. Эта зависимость будет иметь вид, изображенный на рис. 2, где R(n) — один из показателей риска для n-го участка, xn расстояние от начала трассы для n-го участка, Lnдлина n-го участка трассы МН, полученная в результате деления трассы МН на участки.

 

 

Рис. 2. Вид распределения показателя риска R вдоль трассы МН

 

4.3.3. На основе данных по оценке степени риска аварий на МН выделяют участки с наиболее высоким значением риска.

4.3.4. Разбив интервал изменения показателя риска {min R, max R} на равные отрезки и рассчитав суммарную длину различных участков МН Ls, характеризующихся одинаковым уровнем риска, например, удельной частотой ln, можно построить распределение суммарной длины МН Ls по данному показателю R (рис. 3). Данная зависимость полезна при оценке объема работ по обеспечению безопасности трассы МН.

 

 

Рис. 3. Распределение суммарной длины участков Ls трассы по показателю риска R

 

Степень риска аварий рекомендуется определять по табл. 1, где в качестве критерия используется среднегодовой ущерб, выраженный в тоннах потерянной нефти или в денежном исчислении на 1000 км длины МН. Допускается использование других критериев риска. Значения коэффициентов критериев зависят от состояния МН, региональных особенностей и возможностей по обеспечению безопасности.

 

Критерии степени риска аварий на МН

Таблица 1

 

Степень риска

Ожидаемый объем потерь нефти Rv, т/год на 1000 км длины МН

Ожидаемый экологический ущерб Rd, руб/год на 1000 км длины МН

Низкая

Менее 0,1

Менее 100 тыс.

Средняя

0,1—100

100—10000 тыс.

Высокая

Более 100

Более 10 млн.

 

4.3.5. Если показатель риска выше значения, которое может быть определено, как значение "приемлемого риска", то могут быть приняты решения с целью более детального анализа и выработки рекомендаций по управлению риском.

4.4. На этапе "Разработка рекомендаций по управлению риском" подготавливаются рекомендации по оперативному и долговременному управлению риском с целью минимизации отрицательных последствий аварий и обеспечению промышленной безопасности МН.

4.4.1. Полученные оценки показателей риска представляют собой критерии аварийной опасности отдельных участков МН и, следовательно, могут использоваться для разработки оптимальной стратегии технического обслуживания, диагностики и ремонта трубопровода (управление риском). Кроме того, оценки риска для МН в целом могут быть положены в основу выбора долговременной инвестиционной стратегии, при проектировании и проведении экспертизы безопасности МН, для целей декларирования промышленной безопасности, страхования ответственности и аудита.

4.4.2. С помощью анализа распределения показателей риска вдоль трассы МН (рис. 2) решают две основные задачи:

1) разработка и сопровождение оптимальной стратегии диагностики и ремонта трубопровода;

2) определение требуемых мощностей и характера распределения по трассе служб ликвидации последствий аварийных разливов нефти.

4.4.3. Участки с максимальным уровнем риска Rv, характеризующим среднегодовые объемы утечек нефти, в первую очередь, должны рассматриваться с точки зрения необходимости обследования, диагностики или ремонта. По завершении диагностических и ремонтных работ соответствующие оценки факторов должны быть скорректированы.

4.4.4. На базе показателей рисков Rst, Rsr, Ret и Rer проводят оценку требований к службам ликвидации последствий аварийных разливов нефти на сухопутных ландшафтах и водных объектах.

Совместное использование показателей рисков Rst, Rsr и Ret, Rer позволяет уточнить распределение служб, привлекаемых для ликвидации последствий аварий, вдоль трассы МН, при этом учитываются не только ожидаемые площади загрязнения (Rst, Rsr), но и возможные экологические последствия аварий через эффективные площади загрязнения Ret и Rer.

4.4.5. Значения ,  и  могут быть использованы при формировании специального экологического фонда предприятия нефтепроводного транспорта, при проведении экологического аудита и экологического страхования МН, при разработке декларации промышленной безопасности объекта.

4.4.6. Значения Rv и Rd могут быть использованы при проектировании — для сравнения опасности различных вариантов прокладки МН или с существующими объектами трубопроводного транспорта.

4.5. Оценка степени риска завершается отчетом по результатам анализа риска.

4.5.1. Отчет по результатам анализа риска должен соответствовать требованиям РД 08-120-96 или иных документов, на основании которых проводится анализ риска (например, документов по декларированию промышленной безопасности). В отчете результаты анализа риска должны быть обоснованы и оформлены таким образом, чтобы выполненные работы и выводы могли быть проверены и повторены специалистами, которые не участвовали в первоначальном анализе.

4.5.2. Отчет по результатам анализа риска должен включать следующие структурные элементы (если нет специальных требований):

Титульный лист.

Список исполнителей с указанием должностей, научных званий, организаций.

Аннотация.

Содержание (оглавление).

Введение.

Описание анализируемой нефтепроводной системы.

Исходные данные и их источники.

Методология анализа риска, исходные предположения и ограничения.

Результаты идентификации опасностей.

Результаты оценки риска.

Рекомендации по управлению риском.

Заключение.

Список использованных источников.

Приложения.

4.5.2.1. Во "Введении" обосновывается проведение анализа риска, цели и задачи работ, границы (местоположение) района работ, виды и объемы выполняемых работ, сроки их проведения, состав исполнителей, отступления от программы работ, их обоснование и другое.

4.5.2.2. В разделе "Описание анализируемой нефтепроводной системы" приводятся сведения об основных технологических характеристиках нефтепроводной системы (диаметр трубопровода, год ввода в эксплуатацию, количество ниток, рабочее давление, производительность МН, описание НПС, насосных агрегатов, конструкции переходов через водные преграды, пересечения с транспортными путями и др.). Должны быть приведены сведения о действующей системе обеспечения безопасности, включая систему управления процессом перекачки нефти, методы обнаружения утечек, характеристики арматуры, наличие аварийно-восстановительных пунктов, средств ликвидации аварий, ход выполнения мероприятий по повышению надежности и безопасности. Необходимо привести статистику произошедших аварий и неполадок, сведения о последствиях аварий и эффективности их ликвидации и другую информацию, позволяющую качественно оценить состояние безопасности МН.

4.5.2.3. В разделе "Исходные данные и их источники" дается подробное описание информации, содержащейся в каждом из источников, сопровождаемое анализом полноты, достоверности, репрезентативности рассматриваемой информации, ее достаточности с точки зрения использования в процедуре анализа риска. Приводится объяснение причин отсутствия необходимой информации.

4.5.2.4. В разделе "Методология анализа риска, исходные предположения и ограничения" рассматриваются особенности применения отдельных элементов методики, изложенной в настоящем Методическом руководстве для конкретной нефтепроводной системы и имеющейся исходной информации. Анализируются ограничения, накладываемые на применение методики наличием "информационных пробелов", обосновываются предположения о возможном содержании отсутствующей информации. Делаются выводы о допустимости применения методики или ее отдельных элементов в условиях недостаточности исходной информации.

4.5.2.5. В разделе "Результаты идентификации опасностей" описываются процедуры выделения участков анализа риска и предварительной оценки опасностей, включая оценку значимости факторов, влияющих на риск аварии.

4.5.2.6. В разделе "Результаты оценки риска" приводятся результаты расчетов показателей риска разлива нефти для всех участков нефтепровода, а также результаты всех промежуточных этапов расчетов. Расчеты документируются таким образом, чтобы обеспечить возможность их проверочного воспроизведения. В разделе приводятся результаты сравнительного анализа влияния различных факторов на частоту аварий на МН в целом и его отдельных участках. В состав раздела также включаются результаты ранжирования участков нефтепровода по показателям риска.

4.5.2.7. Раздел "Рекомендации по управлению риском" содержит перечень конкретных мероприятий, направленных на снижение частоты аварийных утечек из МН. Перечень мероприятий определяется на основе сведений о наиболее значимых факторах влияния, действующих на рассматриваемом участке МН. Рекомендации могут включать оценку временных, трудовых, материальных и финансовых затрат на проведение профилактических мероприятий по обеспечению безопасности. На основе сопоставления затрат и значений показателей риска планируется оптимальный график проведения мероприятий, выделяются объекты линейной части МН для первоочередного проведения профилактических работ.

4.5.2.8. В "Заключении" кратко рассматриваются основные результаты анализа риска. Должны быть выделены участки с наиболее высокими показателями риска и объяснены причины повышенной опасности этих участков. Приводятся основные выводы и рекомендации по управлению риском по итогам выполненных работ.

4.5.2.9. В "Списке использованных источников" приводится в алфавитном порядке перечень фондовых, опубликованных материалов, нормативно-методических документов, использованных при составлении отчета.

 

5. СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

 

1. Порядок уведомления и представления информации территориальным органам Госгортехнадзора об авариях, аварийных утечках и опасных условиях эксплуатации на объектах магистрального трубопроводного транспорта газов и опасных жидкостей (РД 08-204-98). Утвержден постановлением Госгортехнадзора России от 02.04.98 № 23.

2. "Временное положение о порядке взаимодействия федеральных органов и исполнительной власти при аварийных выбросах и сбросах загрязняющих веществ и экстремально высоком загрязнении окружающей природной среды" (зарегистрировано в Министерстве юстиции Российской Федерации 11.09.95 № 946).

3. Временный порядок оценки и возмещения вреда окружающей среде в результате аварии. — М.: Минприроды РФ, 1994. — 38 с.

4. Батоян В.В. Принципы районирования территории СССР по устойчивости поверхностных вод к загрязнению при нефтедобыче // Ландшафтно-геохимическое районирование и охрана среды. — М.: Мысль, 1983. — С. 118—130.

5. ГОСТ 16350-80. Климат СССР. Районирование и статистические параметры климатических факторов для технических целей.

6. ГОСТ 7.32-91. Отчет о научно-исследовательской работе. Структура и правила оформления.

7. Мазур И.И., Иванцов О.М., Молдаванов О.И. Конструктивная надежность и экологическая безопасность трубопроводов. — М.: Недра, 1990. — 263 с.

8. Методика определения ущерба окружающей природной среде при авариях на магистральных нефтепроводах. Руководящий документ Минтопэнерго РФ, АК "Транснефть". — М.: Транспресс, 1996. — 67 с.

9. Методические рекомендации по инженерно-геологическому обследованию линейной части магистральных нефтепроводов. Руководящий документ АК "Транснефть". — М., 1995.

10. Методические рекомендации по проведению экологического обследования действующих магистральных нефтепроводов (проект, разработанный ФЦГС "Экология" в 1997 г.).

11. Разработка научно обоснованных методических рекомендаций по проведению экологического обследования действующих магистральных нефтепроводов. Отчет о НИР (2 и 3 этапы) / ФЦГС "Экология" (по заказу АК "Транснефть"). — М., 1996.

12. Оценка прочности и остаточного ресурса магистрального нефтепровода с дефектами, обнаруживаемыми внутритрубными инспекционными снарядами // Трубопроводный транспорт нефти. — 1997, — № 2.

13. СНиП 2.05.06-85*. Магистральные трубопроводы./ Минстрой России. — М.: ГУП ЦПП, 1997. — 60 с.

14. Шуйцев Ю.К. Восстановительная способность растительности как основа прогнозного районирования (на примере нефтедобычи) // Ландшафтно-геохимическое районирование и охрана среды. — М.: Мысль, 1983. — С.145—154.

15. Лисин Ю.В., Верушин А.В., Лисанов М.В., Мартынюк В.Ф., Печеркин А.С., Сидоров В.И. Концепция методического руководства по оценке степени риска аварий на магистральных нефтепроводах // Трубопроводный транспорт нефти. — 1997, № 12. — С.8—14.

16. Лисанов М.В., Печеркин А.С., Сидоров В.И. Анализ риска и декларирование безопасности объектов нефтяной и газовой промышленности // Надежность и сертификация оборудования для нефти и газа. — 1998, №1. — С.37—41.

17. W.Kent Muhlbauer. Pipeline Risk Management Manuel / Gulf Publishing Company. — 1992. — 256 p.

18. Черняев К.В., Васин Е.С., Лисанов М.В. и др. Концепция методического руководства по определению периодичности внутритрубной диагностики магистральных нефтепроводов // Трубопроводный транспорт нефти. — 1997, № 4. — С. 16—19.

19. Гумеров А.Г., Зайнуллин Р.С., Ямалеев К.М., Росляков А.В. Старение труб нефтепроводов. — М.: Недра, 1995. — 223 с.

20. Сафонов В.C., Одишария Г.Э., Овчаров С.В., Швыряев А.А. Об особенностях использования статистической информации при анализе риска эксплуатации трубопроводов // Морские и арктические нефтегазовые месторождения и экология: Сб. трудов. — М.: ВНИИГАЗ, 1996. — С. 152—178.

21. Лисанов М.В., Печеркин А.С., Сидоров В.И., Швыряев А.А., Сафонов В.C., Назаров И.П., Анисимов С.М., Борно О.И., Толмачев И.В. Оценка риска аварий на линейной части магистральных нефтепроводов // Безопасность труда в промышленности. — 1998, № 9. — С.50—56.

22. Методика определения опасности дефектов труб по данным обследования внутритрубными профилемерами / АК "Транснефть". — М.: Транспресс, 1997. — 20 с.

23. Методика определения остаточного ресурса трубопроводов с дефектами, определяемыми внутритрубными инспекционными снарядами / АК "Транснефть". — М.: Транспресс, 1994. — 36 с.

24. Методика определения опасности повреждений стенки труб магистральных нефтепроводов по данным обследования внутритрубными дефектоскопами / АК "Транснефть". — М.: Транспресс, 1997. - 32 с.

25. Разработка методического руководства по оценке степени риска аварий на магистральных нефтепроводах. Сопровождение методического руководства по оценке степени риска аварий на магистральных нефтепроводах с целью утверждения и согласования. Отчет о НИР (5 этап, заключительный) / НТЦ "Промышленная безопасность". — М., 1998.

 

 

ПРИЛОЖЕНИЯ

 

ПРИЛОЖЕНИЕ 1

 

ИСХОДНАЯ ИНФОРМАЦИЯ, НЕОБХОДИМАЯ ДЛЯ ОЦЕНКИ

СТЕПЕНИ РИСКА АВАРИЙ НА МН

 

Сбор исходной информации, необходимой для анализа риска, как правило, осуществляется с использованием имеющихся в АО МН, контрольных и надзорных органах государственной власти документов, в том числе предпроектной и проектной документации, материалов инженерных изысканий, отчетов о работах по экологическому обследованию нефтепроводов и других документов (табл. П.1.1). В случае недостаточности указанных материалов в составе работ по анализу риска может предусматриваться дополнительный этап, включающий натурное обследование объектов нефтетранспортной системы, а также природных объектов. Состав работ по обследованию определяется в соответствии с табл. П.1.1. Инженерно-геологическая часть обследования, если в ней есть необходимость, выполняется в соответствии с [9].

Источники исходной информации, указанные в табл. П.1.1, рекомендуется использовать в первую очередь. В то же время необходимо учитывать, что требуемая информация может содержаться в иных документах, полный перечень которых привести невозможно. Документы, указанные в табл. П.1.1, могут иметь отличающиеся наименования.

Помимо документов, приведенных в табл. П.1.1, для получения дополнительных сведений об экологической обстановке на территории размещения объектов МН, уровне аварийности, а также для предварительной оценки опасностей рекомендуется использовать:

информационное сообщение об аварийном сбросе нефти, подготовленное в соответствии с [2], [3];

протокол о нарушении экологических требований законодательства Российской Федерации, составленный по факту аварии в соответствии с требованиями [3];

форму статотчетности № 6-ос "Сведения о загрязнении окружающей среды при авариях на магистральных трубопроводах";

информационное сообщение об экстремально высоком уровне загрязнения окружающей среды нефтью, подготовленное в соответствии с [2];

материалы расследования аварии, проведенного органами государственного контроля, включая материалы лабораторных анализов проб природных сред на определение содержания нефти и нефтепродуктов, расчеты объемов разлившейся нефти, другие сведения в соответствии с [8];

приказ АО МН (РНУ) об образовании службы по ликвидации последствий аварий;

положение о службе по ликвидации последствий аварий или регламент функционирования службы (в том числе перечень технических средств, переданных в распоряжение службы);

план (программа) учений по ликвидации последствий аварий;

отчеты (рапорты) руководителя службы о проведенных ликвидационных работах (включая перечень использованных технических средств);

приказ АО МН (РНУ) об оценке эффективности функционирования службы, выявленных недостатках организации и проведении ликвидационных работ и мерах по устранению недостатков.

 

Таблица П.1.1

 

Обозначение и наименование фактора влияния

Содержание исходной информации

Рекомендуемый источник исходной информации

1

2

3

4

Группа 1: Внешние антропогенные воздействия

F11

Минимальная глубина заложения подземного МН

Фактическая толщина слоя грунта h, м над верхней образующей самого мелко-заглубленного отрезка в пределах рассматриваемого участка МН

1) Проект (ТП), рабочая документация (РД), технический паспорт (ТхПс) на рассматриваемый участок (переход через водную преграду).

2) СНиП 2.05.06-85*, п. 5.1 (при отсутствии проектной документации или техпаспорта и наличии информации в соответствии с п. 5.1).

3) h = 0,9 м (для наземного участка линейной части МН) при отсутствии информации в соответствии с п. 5.1.

F12

Уровень антропогенной активности

Плотность населения (Ннас) в среднем на участке МН в трехкилометровой полосе вдоль трассы

Карта плотности населения в географическом атласе субъекта РФ или России

 

 

Проведение в охранной зоне МН строительных и других работ

1) Разрешения на производство работ, выданные линейной эксплуатационной службой (ЛЭС) РНУ (АО МН).

2) Акты о нарушении правил ведения работ в охранной зоне нефтепровода, находящиеся в архивах органов архитектурно-строительного надзора Минстроя России или РНУ (АО МН).

1) ТП, РД, ТхПс.

2) Схема рассматриваемого участка МН.

3) Схемы коммуникаций, находящиеся в архивах органов архитектурно-строительного надзора местной администрации.

 

 

Наличие участков автомобильных и железных дорог в охранной зоне МН

1) ТП, РД, ТхПс.

2) Схема рассматриваемого участка МН.

3) Схемы дорожной сети, находящиеся, в архивах служб эксплуатации дорог.

F13

Степень защищенности наземного оборудования

Наличие и материал ограждения наземного оборудования, наличие между авто- или железной дорогой и наземным оборудованием дополнительного "барьера", расстояния от авто- или железной дороги до площадки наземного оборудования, наличие предупреждающих и запрещающих знаков

1) ТП, РД, ТхПс, паспорта наземного оборудования.

2) Журналы осмотра трассы, регистрации ремонтных работ.

3) Материалы обследования объектов МН, выполненного для получения соответствующей исходной информации в составе работ по анализу риска.

F14

Состояние охранной зоны МИ

Степень расчистки охранной зоны, закрепление трассы знаками

1) Журналы осмотра трассы.

2) Материалы натурного обследования охранной зоны МН, выполненного в составе работ по анализу риска.

F15

Частота патрулирования

Частота обходов участка

1) Правила технической эксплуатации МН (ПТЭ) или технический регламент (ТР).

2) Журнал осмотра трассы.

F16

Согласование со сторонними организациями проведения работ в охранной зоне МН

Наличие системы согласования, планово-картографических материалов у районной администрации и предприятий-землепользователей, случаи несанкционированного проведения работ в охранной зоне

Схемы коммуникаций, находящиеся в архиве органов архитектурно-строительного надзора местной администрации или предприятий-землепользователей

F17

Разъяснительные мероприятия в отношении населения и персонала предприятий иной ведомственной принадлежности

Факты ведения разъяснительной работы и инструктажа

Журнал инструктажа

Группа 2: Коррозия

F21

Наличие и качество работы ЭХЗ

Защищенность МН по протяженности, давность ввода в действие ЭХЗ, периодичность техобслуживания ЭХЗ

1) ТП, РД, ТхПс, ПТЭ, ТР (в части систем ЭХЗ).

2) Инструкция по эксплуатации системы ЭХЗ.

3) Журнал регистрации ремонтных работ.

F22

Состояние изоляционного покрытия

Качество проектных решений по изоляционному покрытию, качество нанесения покрытия, периодичность контроля состояния покрытия, качество ремонта изоляции

1) Соответствующий раздел ТП, РД, ТхПс, ПТЭ, ТР.

2) Акты приемки МН в эксплуатацию, включая замечания приемной комиссии.

3) Журнал регистрации ремонтных работ.

F23

Коррозионная активность грунта

Удельное сопротивление грунта рг, кислотность грунта pH, деятельность микроорганизмов

1) Материалы инженерных изысканий, выполненных при проектировании МН.

2) При отсутствии вышеназванных материалов результаты инженерно-геологического обследования МН в составе работ по анализу риска.

F24

Продолжительность эксплуатации МН без замены изоляционного покрытия

Продолжительность периода эксплуатации tэксп

1) Акты приемки работ по замене (ремонту) изоляционного покрытия.

2) Журнал регистрации ремонтных работ.

F25

Наличие подземных металлических сооружений и энергосистем вблизи МН

Количество металлических сооружений, энергосистем постоянного и переменного тока на расстоянии до 200 м от трассы

1) ТП, РД, схема участка трассы МН.

2) Планы и схемы размещений подземных сооружений и коммуникаций, находящиеся в архивах местных органов архитектурно-строительного надзора или предприятий-землепользователей.

3) При отсутствии вышеуказанных документов материалы натурного обследования объектов МН в составе работ по анализу риска.

F26

Проведение измерений с целью контроля эффективности ЭХЗ

Расстояние Lкв между катодными выводами и частота измерений fкит

1) ТП, РД (раздел "Средства электрохимической защиты").

2) ПТЭ или ТР (в части контроля ЭХЗ).

3) Журнал контроля эффективности ЭХЗ.

F27

Контроль защищенности МН

Период времени tкит, прошедший с момента проведения последних измерений

Журнал контроля защищенности МН

F28

Контроль состояния МН дефектоскопами

Период времени tкит, прошедший со дня последнего пропуска дефектоскопа

1) Технический отчет о проведении работ по внутритрубной диагностике.

2) Акты приема работ по внутритрубной диагностике

Группа 3: Качество производства труб

F31

Технология изготовления и марка стали труб

Сведения о технологии и марке стали

ТП, РД

F32

Поставщик труб

Сведения о фирме-изготовителе труб

1) ТП, РД.

2) Проекты организации строительства (ПОС) и производства работ (ППР).

F33

Продолжительность эксплуатации участка МН

Продолжительность периода эксплуатации tэксп

Акты комиссии по приемке законченного строителями МН

Группа 4: Качество строительно-монтажных работ

F41

Категория участка по сложности производства работ

Сведения о сложности условий строительного освоения трассы МН

ТП, РД, ПОС, ППР

F42

Уровень "комфортности" производства работ

Климатический район и сезон строительства

ТП, РД, ПОС, ППР

F43

Контроль качества строительно-монтажных работ

Сведения о контроле по отдельным этапам работ и технологическим операциям

Акты приемки законченного строителями МН, отдельных этапов строительства и технологических операций, приложения к актам и другая сопутствующая документация

F44

Контроль качества сварных соединений

Процент сварных стыков Kсв, для которых выполнен контроль качества физическими методами

Акты приемки законченного строителями МН, отдельных этапов строительства и технологических операций, приложения к актам и другая сопутствующая документация

F45

Адекватность применяемых материалов и изделий

Сведения об использовании материалов и изделий, не предусмотренных проектом

Заключение комиссии по расследованию причин аварии на МН (в случае установления в качестве причины аварии факта использования не предусмотренных проектом материалов и изделий)

F46

Качество хранения и обращения с материалами

Сведения о нарушении правил хранения и транспортирования материалов, регламентированных СНиП

ПОС, ППР

Группа 5: Конструктивно-технологические факторы

F51

Отношение фактической толщины стенки трубы к требуемой

Расчетное и фактическое значения толщины стенки трубы dрасч и dфакт

1) ТП, РД, ПОС, ППР.

2) При отсутствии вышеназванных документов результаты замеров фактической толщины стенки трубы, выполненных в составе работ по анализу риска.

F52

Усталость металла

Число циклов нагружения, имевших место за время эксплуатации рассматриваемого участка, и амплитуда подававшейся нагрузки

Документация диспетчерской службы РНУ (АО МН)

F53

Возможность возникновения гидравлических ударов

Качественная оценка вероятности возникновения гидравлических ударов

ТП, РД

F54

Системы телемеханики и автоматики (СТА)

Технические характеристики СТА

1) Соответствующие разделы ТП, РД, ТхПс.

2) Паспорта оборудования СТА.

Группа 6: Природные воздействия

F61

Вероятность перемещений грунта или размыва подводного перехода

Сведения о фактах перемещения грунта или наличии размывов

1) Материалы инженерных изысканий, выполненных при проектировании МН.

2) Журнал проверок технического состояния подводных переходов.

3) При отсутствии вышеперечисленной документации материалы натурных наблюдений на подводных переходах, выполненных в составе работ по анализу риска.

F62

Несущая способность грунта

Сведения о типах грунтов в основании МН

1) Раздел ТП, РД "Основания и фундаменты".

2) Материалы инженерных изысканий, выполненных при проектировании МН.

3) При отсутствии вышеперечисленной документации материалы натурных исследований грунтов, выполненных в составе работ по анализу риска.

F63

Наличие на участке линейной арматуры и наземных узлов разветвленной конфигурации

Сведения о конструкции линейной арматуры и наземных узлов

ТП, РД

F64

Превентивные мероприятия

Сведения о проведении и характере превентивных мероприятий

1) ПТЭ, ТР.

2) Журнал проведения профилактических ремонтов.

Группа 7: Эксплуатационные факторы

F71

Эксплуатационная документация

Наличие и своевременное обновление всей необходимой в соответствии с ПТЭ технической и оперативной документации по линейной части МН

Техническая и оперативная документация

F72

Периодичность контроля и ремонтов

Соответствие сроков и состава осмотров, контрольных операций, межремонтного обслуживания и ремонтов требованиям ПТЭ

ПТЭ

F73

Качество ремонтных работ

Оценка качества работ

Акты приемки выполненных ремонтных работ

F74

Качество связи

Наличие и тип связи

ПТЭ, ТР

F75

Уровень обучения персонала

Прохождение персоналом курсов повышения квалификации, содержание курса и периодичность обучения

Журнал учета повышения квалификации персонала

Группа 8: Дефекты тела трубы и сварных швов

F81

Количество "опасных" дефектов на участке трассы

Количество дефектов, обнаруженных при диагностике

Данные предприятия (ОАО, РНУ), ОАО ЦТД "Диаскан"

F82

Количество "неопасных" дефектов на участке трассы

Количество дефектов, обнаруженных при диагностике

Данные предприятия (ОАО, РНУ), ОАО ЦТД "Диаскан"

F83

Диагностика

Время, прошедшее после проведения диагностики, тип внутритрубного снаряда, принятые меры безопасности

Данные предприятия (ОАО, РНУ), ОАО ЦТД "Диаскан"

 

 

ПРИЛОЖЕНИЕ 2

 

ОЦЕНКА ЧАСТОТЫ УТЕЧЕК НЕФТИ

 

В данном приложении представлены алгоритмы расчета:

- частоты утечек нефти на участке линейной части ln;

- среднестатистической частоты аварий на трассе МН l;

- частоты образования дефектного отверстия lс в зависимости от его размеров и эквивалентной площади Sэфф.

 

1. ОЦЕНКА ЧАСТОТЫ УТЕЧЕК НЕФТИ НА УЧАСТКЕ ЛИНЕЙНОЙ ЧАСТИ МН

 

Аварии на МН характеризуются наличием существенных различий в значениях удельной частоты аварий  на МН и их отдельных участках ln, различающихся по своим конструктивно-технологическим характеристикам, особенностям проектирования, строительства и эксплуатируемым в различных условиях окружающей природной и социальной среды.

Механизм учета распределения аварий при оценке риска реализован с использованием процедуры деления трассы анализируемого МН на участки, характеризуемые примерно постоянным значением локальной частоты (удельной интенсивности) аварии внутри каждого участка. Локальная частота аварийных отказов на каждом из таких участков определяется с учетом конечного множества факторов, влияющих на надежность МН. На практике деление трассы на участки производится с использованием признака наиболее существенного изменения значения того или иного фактора влияния.

Для оценки локальной частоты аварий вводится система классификации и группировки факторов влияния в соответствии с общими причинами аварий, выявляемыми при анализе статистических данных по аварийным отказам. Из статистических данных по авариям на МН выделены 8 групп факторов влияния с указанием относительного "вклада" каждой группы Грi      (i = 1,... 8) в суммарную статистику аварийных отказов с помощью весового коэффициента ri (табл. П.2.1). Приведенные значения коэффициентов ri носят предварительный характер и могут быть уточнены с учетом мнения специалистов.

В пределах каждой группы Грi имеется различное количество (Ji) факторов влияния. Каждый фактор имеет буквенно-цифровое обозначение Fij, где i — номер группы, j — номер фактора в группе.

 

Таблица П.2.1

 

 

Обозначение и наименование группы факторов

Доля группы, ri

Гр1

Внешние антропогенные воздействия

0,20

Гр2

Коррозия

0,10

Гр3

Качество производства труб

0,05

Гр4

Качество строительно-монтажных работ

0,10

Гр5

Конструктивно-технологические факторы

0,10

Гр6

Природные воздействия

0,10

Гр7

Эксплуатационные факторы

0,05

Гр8

Дефекты тела трубы и сварных швов

0,30

 

Относительный вклад фактора Fij внутри своей группы в изменение интенсивности аварийных отказов на рассматриваемом участке нефтепровода учитывается с помощью весового коэффициента (доли) qij.

На основании сформулированных определений проводится процедура деления трассы МН на участки, которая осуществляется последовательно и независимо по каждому фактору влияния Fij или группе факторов Грi. Критерием для определения местоположения границы очередного участка при делении трассы по фактору влияния Fij служит достаточно заметное (возможно, скачкообразное) изменение значения этого фактора. Величина "скачка", выбираемая для данного фактора, определяет длины и число участков, а, следовательно, и точность оценки риска. В общем случае длины участков, соответствующие делению по фактору Fij, будут различны. Каждое последующее деление по очередному фактору будет увеличивать общее число участков, причем границы участков, получаемых при очередной процедуре, могут совпадать с границами, установленными в ходе предыдущих процедур деления по другим факторам влияния. В ряде случаев на участках трассы, примыкающих к населенным пунктам, при необходимости степень детализации при разбивке может быть увеличена, а на незаселенных территориях уменьшена.

В зависимости от совокупности конкретных значений различных факторов влияния, имеющих место на рассматриваемом участке трассы, интенсивность аварийных отказов на нем будет в той или иной степени отличаться от среднестатистической для данной трассы . Таким образом, на каждом n-ом участке трассы определяется значение интегрального коэффициента kвл, показывающего, во сколько раз удельная частота (вероятность) аварий на участке ln отличается от среднестатистической для данной трассы :

.                                                   (П.2.1)

Значение  определяется из данных статистики по авариям на предприятии, эксплуатирующем данный МН.

Расчет коэффициента kвл производится с использованием балльной оценочной системы, при которой каждому фактору Fij ставится в соответствие определенное, назначаемое на основании расчета или экспертной оценки, количество баллов Вij (по 10-балльной шкале), отражающее интенсивность его влияния. При рассмотрении конкретного n-го участка трассы последовательно оценивается интенсивность влияния на каждого из М = I × J факторов. Полученные для всех факторов влияния балльные оценки {Bij, i = 1,..., I, j = 1,..., J} подставляются в следующие формулы для определения kвл.

,                                                 (П.2.2)

где ; .

Если нет достоверных статистических данных по аварийности на рассматриваемом МН, рекомендуется использовать следующее соотношение:

                                              (П.2.3)

где lср — среднестатистическое значение аварий на всех действующих МН за последние 5 лет, Вср — балльная оценка среднестатистического нефтепровода, принимаемая равной 3.

В приложении 5 приведены основные факторы по каждой из рассматриваемых групп, доля каждого фактора в группе qij и методика оценки балльных значений Вij. Как уже отмечалось ранее для коэффициента ri, приведенные в таблицах данного приложения значения qij и Bij носят базовый характер, так как в существенной мере зависят от времени эксплуатации, места расположения МН и многих других факторов. Величины коэффициентов ri, qij и Вij должны уточняться для каждого конкретного МН с использованием данных по статистике отказов и аварий и мнения специалистов эксплуатирующей организации.

Для участков, состоящих из отрезков с существенно различными факторами вдоль его длины, значение Fn определяется как сумма оценок составляющих его отрезков с учетом длин этих отрезков. Например, если на одном километре участка приходится переход через реку длиной 300 м, а на остальной части длиной 700 м находится лес, то

,

где F0, F1 балльные оценки соответствующих отрезков рассматриваемого участка.

В табл. П.2.2 приведены обобщенные характеристики балльной оценки Fn и диапазоны ее значений для различных участков нефтепровода в зависимости от срока эксплуатации, определенные согласно прил. 5 и с учетом "старения" МН [19]. Конкретные значения Fn уточняются экспертным путем.

 

Балльные оценки Fn различных участков МН

в зависимости от срока их эксплуатации

 

Таблица П.2.2

 

Характеристика, тип участка МН

Срок эксплуатации, лет

 

 

более 30

20-30

менее 20

1.

Участки трассы, удаленные от населенных пунктов и транспортных коммуникаций, проходящие по лесистой или степной зоне, кормовым угодьям, без болот и речных переходов

2,7-3,0

2,5-2,7

2,3-2,5

2.

Переходы через водные преграды и обводненные участки трассы в силу повышенной коррозии и трудности восстановления изоляционного покрытия, а также на крупных водных переходах с возможным воздействием со стороны речного транспорта

4,6-6,0

4,3-5,9

4,1-5,7

3.

Воздушные переходы через овраги, реки, подземные переходы через наземные транспортные коммуникации

3,7-4,3

3,5-4,1

3,3-4,0

4.

Места расположения запорной и вспомогательной арматуры и ответвлений (лупингов)

4,3-4,8

4,1-4,6

3,9-4,4

5.

Участки трассы, проходящие через зоны с повышенной плотностью населения, в которых возможны утечки нефти из МН из-за хищения нефтепродуктов, вандализма и других действий со стороны третьих лиц

4,0-5,0

3,8-4,8

3,6-4,6

6.

Участки трассы, примыкающие к НПС, которые являются "источниками" или "приемниками" циклических нагрузок на МН, связанных с изменениями режима перекачки и возникновением при этом гидравлических волн

5,0-7,0

4,8-6,4

4,6-6,0

7.

Участки трассы, пересекающие зоны с повышенной опасностью природных воздействий (геологические разломы, оползни)

4,6-6,0

4,3-5,9

4,1-5,7

 

2 ОЦЕНКА ЧАСТОТЫ ОБРАЗОВАНИЯ ДЕФЕКТНОГО ОТВЕРСТИЯ

В ЗАВИСИМОСТИ ОТ ЕГО РАЗМЕРОВ

 

Наибольший риск аварий на МН связан с продольными разрушениями которые могут происходить как по основному металлу труб, так и в зоне сварных швов, при образовании коррозионных "свищей", "гильотинных" разрывов.

Из анализа аварийных утечек нефти следует, что характерный размер продольной трещины Lр подчиняется вероятностному распределению Вейбулла,

,                                        (П.2.4)

где F (Lр) вероятность образования трещины (дефектного отверстия) с характерным размером менее Lр (в м).

Один из вариантов дискретного распределения вероятности утечки нефти из дефектных отверстий с 3-мя характерными размерами Lр/D и соответствующими им эквивалентными площадями Sэфф приведен в табл. П.2.3. Значения Sэфф приведены для верхней границы интервала характерных размеров Lр/D дефектных отверстий в предположении об их ромбической форме (щели) с соотношением длины к ширине 8:1. В табл. П.2.3 D — условный диаметр трубопровода, S0 = pD2/4 площадь поперечного сечения трубы МН. Выбранные таким образом размеры щелей и вероятности следует считать реперными.

 

Параметры дефектного отверстия в МН

 

Таблица П.2.3

 

Параметры дефектного отверстия

"Свищи"

m = 1

Трещины

т = 2

"Гильотинный" разрыв

т = 3

Lp/D

0,3

0,75

1,5

Sэфф/S0

0,0072

0,0448

0,179

Доля разрывов

0,55

0,35

0,10

 

Для других значений характерных размеров Lр/D значения вероятности образования дефектного отверстия с таким характерным размером могут быть определены по формуле (П.2.3.).

Удельная частота аварий на участке с возникновением дефектных разрывов определенного размера (характерные размеры дефектных разрывов указаны в табл. П.2.3) определяется по формуле

,

где т = 1, 2, 3 — индекс,

Пример. Удельная частота аварий на участке МН с D = 100 см составила ln = 0,001 аварий/(км×год). Тогда удельная частота возникновения коррозионного свища (или трещин малых размеров)  составит 0,00055 аварий/(км×год). Продольный (характерный) размер такого дефектного отверстия Lp = 30,6 см и площадь разрыва Sэфф = 117 см2. Соответственно, для трещин средних размеров —  = 0,00035 аварий/ (км×год), Lр = 76,5 см, Sэфф = 732 см2; для "гильотинного" разрыва (разрыва на полное сечение) -  = 0,0001 аварий/(км×год),             Lр = 153 см, Sэфф = 2813 см2.

 

 

ПРИЛОЖЕНИЕ 3

 

РАСЧЕТ ОБЪЕМОВ УТЕЧКИ НЕФТИ И ПЛОЩАДЕЙ ЗАГРЯЗНЕНИЯ

ПРИ АВАРИЯХ НА МН

 

1. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА НЕФТИ, ВЫЛИВШЕЙСЯ ИЗ МН

ВСЛЕДСТВИЕ АВАРИИ

 

1.1. Общий алгоритм оценки количества разлившейся нефти

 

Основные гидравлические параметры, влияющие на аварийное истечение нефти и экологический ущерб, представлены в РД "Методика определения ущерба окружающей среде при авариях на магистральных нефтепроводах" [8]. Однако, данная методика применима только в случае произошедших аварий, когда большинство исходных данных для расчета может быть определено при расследовании аварии.

Количество нефти, которое может вытечь при аварии, является вероятностной функцией, зависящей от следующих случайных параметров:

- места расположения и площади дефектного отверстия (разрыва);

- продолжительности утечки нефти с момента возникновения аварии до остановки перекачки, что составляет 3¸20 мин для крупных разрывов и несколько часов для малых утечек, которые трудно зафиксировать приборами на НПС;

- продолжительности утечки нефти с момента остановки перекачки до закрытия задвижек;

- времени прибытия АВБ (от десятков минут до нескольких часов) и времени выполнения мер до полного прекращения истечения нефти.

Остальные параметры и условия перекачки (диаметр нефтепровода, профиль трассы, характеристики насосов, уставка на защиту и др.) могут считаться постоянными и использоваться в качестве исходных данных.

Для прогнозирования возможных и ожидаемых (с учетом вероятности) объемов утечки и потерь нефти в настоящем Методическом руководстве разработан специальный алгоритм, блок-схема которого представлена на рис. П.3.1.

При моделировании 12 сценариев аварийной утечки нефти могут быть получены 12 значений объемов аварийного разлива нефти  реализуемых с вероятностью  значения для которой приведены в табл. П.3.1.

 

 

Аварийная утечка нефти из МН

 

 

 

 

Образование разрыва с характерным размером Lр с вероятностью

 

 

 

 

Lp = 0,3D

 = 0,55

 

Lp = 0,75D

 = 0,35

 

Lp = 1,5D

 = 0,10

 

 

 

 

 

 

Утечка нефти в напорном режиме объемом  (m = 1, 2, 3; j = 1, 2)

до остановки перекачки и закрытия задвижек

за время t1 с вероятностью  и t2

 

 

 

 

 

 

 

 

 

 

 

 

t1 = 15 мин

 

t2 = 1 ч

 

t1 = 5 мин

 

t2 = 10 мин

 

t1 = 5 мин

 

t2 = 10 мин

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Утечка нефти в самотечном режиме объемом  с вероятностью

 

 

Прибытие аварийно-восстановительной бригады (АВБ)

Меры по локализации аварии успешны:

Да — с вероятностью

Нет — с вероятностью

 

Да

 

 

Нет

 

 

 

 

 

 

 определяется с учетом времени прибытия АВБ (k = 1)

 

 

 полный сток из

отсеченного участка (k = 1)

 

 

 

 

 

 

 

Полный объем утечки для каждого сценария

 

 

 

 

Определение объемов потерь нефти для каждого сценария

 

 

 

 

Определение средней массы потерь нефти Мз

 

 

 

Рис. П.3.1. Алгоритм расчета аварийных утечек нефти из МН

 

Таблица П.3.1

 

 

Вероятность образования

Вероятность утечки нефти:

Вероятность

 

дефектного разрыва с размером Lp

В напорном режиме,

В самотечном режиме,

аварийных утечек нефти в

сценария

i

т=1

Lp=0,3D

т=2

Lp=0,75D

m=3

Lp=1,5D

j=1

j=2

k=1

k=2

зависимости от сценария

 

0,55

0,35

0,1

0,7

0,3

0,7

0,3

1

*

 

 

*

 

*

 

0,2695

2

*

 

 

*

 

 

*

0,1155

3

*

 

 

 

*

*

 

0,1155

4

*

 

 

 

*

 

*

0,0495

5

 

*

 

*

 

*

 

0,1715

6

 

*

 

*

 

 

*

0,0735

7

 

*

 

 

*

*

 

0,0735

8

 

*

 

 

*

 

*

0,0351

9

 

 

*

*

 

*

 

0,0490

10

 

 

*

*

 

 

*

0,0210

11

 

 

*

 

*

*

 

0,0210

12

 

 

*

 

*

 

*

0,0090

 

,                                                  (П.3.1)

где т = 1,2,3; j = 1,2; k = 1,2; i = 4(m-1)+2(j-1)+k.

Средняя (с учетом сценариев аварий) масса потерь Мз и ожидаемые потери нефти (с учетом вероятности аварийных утечек нефти из МН) Rv определялись по следующим формулам:

,                                            (П.3.2)

                                                          (П.3.3)

Величина доли собираемой нефти Kсб может составлять от 0.5 до 0.95 в зависимости от удаленности аварийно-восстановительных пунктов от места аварии, рельефа местности, типа почв и водных объектов. Значения Kсб и вероятностей остановки насосов за указанные величины времени и эффективность действий аварийно-восстановительных бригад (АВБ) по локализации аварии и сбору нефти определяются экспертным путем, исходя из особенностей трассы рассматриваемого МН.

Характерные времена режимов утечки нефти зависят от размеров дефектного отверстия. Для конкретного трубопровода численные значения могут быть изменены с учетом специфики объекта. Предполагается, что дефектное отверстие имеет форму продольного ромба (щели вдоль оси трубы), малая диагональ которого в 8 раз меньше большой диагонали Lр. Расчеты аварийной утечки нефти проводились для трех характерных размеров большой диагонали Lр дефектных отверстий, равных 0,3D, 0,75D и 1,5D, которые могут образоваться с относительной вероятностью 0,55, 0,35 и 0,10 соответственно (табл. П.2.3). Выбранные таким образом размеры отверстий и вероятности могут считаться реперными, а полученные расчетные значения объемов разлившейся нефти могут быть интерполированы на реальные размеры аварийных отверстий.

Согласно рис. П.3.1 вероятность максимальной утечки нефти объемом  на n-ом участке при разрыве трубопровода на полное сечение (Lp = 1,5D) f12 = 0,1×0,3×0,3×ln, что примерно составляет (1¸2)×10-6 аварий/(км×год).

 

 

1.2. Расчет количества разлившейся нефти

 

Ниже приведены основные соотношения для расчета объема (массы) разлившейся нефти.

Рассмотрим линейный участок нефтепровода протяженностью Lн между нефтеперекачивающими станциями НПС1 и НПС2, на котором на расстоянии x от НПС1 произошла аварийная утечка нефти из МН, причем эффективная площадь отверстия Sэфф         (рис. П.3.1) [8].

Для штатного режима функционирования рассматриваемого участка расход нефти составляет Q0.

1.2.1. Общий объем вытекшей нефти V составляет:

V = V1 +V2 + V3,                                                  (П.3.4)

где: V1 — объем нефти, вытекшей в напорном режиме, то есть с момента повреждения до остановки перекачки; V2 — объем нефти, вытекшей в безнапорном режиме, с момента остановки перекачки до закрытия задвижек; V3 — объем нефти, вытекшей с момента закрытия задвижек до прекращения утечки (до момента прибытия аварийно-восстановительных бригад или полного опорожнения отсеченной части трубопровода).

 

 

Рис. П.3.2. Графики изменения режима перекачки при аварийной утечке нефти из МН:

а) на НПС; б) в трубопроводе (М — место аварийной утечки)

 

1.2.2. Объем V1 нефти, вытекшей из нефтепровода за интервал времени t1 с момента возникновения аварии до остановки перекачки, определяется численным решением системы дифференциальных уравнений в частных производных, включающей законы сохранения массы и импульса потока ньютоновской жидкости:

а) уравнение неразрывности:

;                                                      (П.3.5)

б) уравнение сохранения импульса:

;                                (П.3.6)

в) связь давления и плотности:

,                                                (П.3.7)

где t — время, x расстояние от начала трубопровода; Р, r0, и осредненные по сечению давление, плотность и скорость нефти; l(Re) — коэффициент трения, зависящий от режима течения в трубе (от числа Рейнольдса Rе = uD/v); g — ускорение силы тяжести; b — локальный угловой коэффициент трассы нефтепровода; b = dz/dx; с — скорость распространения звука в нефти вдоль трубопровода (км/с); z — нивелирная отметка трассы; v = m/r кинематический коэффициент вязкости; m — динамический коэффициент вязкости нефти.

Система уравнений (П.3.5)—(П.3.7) дополняется начальными и граничными условиями.

В качестве начальных условий выбирается либо режим стационарного течения, если он известен, либо состояние покоя, если режим стационарного течения заранее неизвестен. В последнем случае режим стационарного течения получается путем решения нестационарной задачи о запуске насоса на входе трубопровода. Обычно для получения стационарного режима течения в трубе достаточно 5-10 временных интервалов, за которые возмущение пробегает от начала трубопровода до его конца.

Граничные условия выбираются следующим образом:

1) На входе трубопровода производная давления полагается равной нулю, а скорость потока определяется с учетом этого давления по характеристике насоса H - Q0 "напор-расход";

2) На выходе трубопровода существует два способа задания граничных условий. Если на выходе стоит насос, осуществляющий нагнетание нефти в следующий участок трубопровода, то следует, полагая равной нулю производную давления, определить скорость потока с учетом этого давления, и давление в начале следующего участка, по характеристике насоса “напор-расход” (этот подход аналогичен заданию входных условий). Если на выходе трубопровода производится слив нефти в какую-либо емкость, что обычно имеет место на последнем участке магистрали, то задается давление в этой емкости (как, правило, равное атмосферному) и равенство нулю первой производной скорости.

После срабатывания задвижек граничные условия на входе/выходе трубопровода изменяются. Граничные условия соответствуют условию "жесткой стенки": равенство нулю скорости на границах и равенство нулю первых производных по давлению.

Для определения величины l(Re) используется зависимость Коулбрука—Уайта, связывающая коэффициент трения l с числом Рейнольдса Re и характеристиками трубопровода.

,                                        (П.3.8)

где А — шероховатость внутренней поверхности трубопровода.

Соотношение (П.3.8) представляет собой трансцендентное уравнение, решая которое, можно определить l(Re).

Скорость истечения нефти из трубопровода определяется из интеграла Бернулли-Эйлера:

,                                                  (П.3.9)

Соответственно поток массы через отверстие задается выражением

,                                                 (П.3.10)

где a — коэффициент, который принимает согласно [8] максимально возможное значение, равное 0,6.

Для вывода интегральных напорно-расходных характеристик насосных станций использовалась известная формула, связывающая создаваемый насосом напор Н с подачей Q0:

                                                   (П.3.11)

где а, b экспериментально определенные коэффициенты штатного режима работы насосов НПС.

1.2.3. Объем нефти V2, вытекшей в безнапорном режиме с момента остановки перекачки до закрытия задвижек, определяется опорожнением расположенных между двумя ближайшими насосными станциями возвышенных и прилегающих к месту повреждения участков за исключением понижений между ними. Истечение нефти определяется переменным во времени напором, уменьшающимся вследствие опорожнения нефтепровода. Время перекрытия задвижек определяется их техническими характеристиками. Алгоритм расчета объема нефти V2 аналогичен приведенному в [8].

1.2.4. Объем нефти V3, вытекшей в безнапорном режиме с момента закрытия задвижек, определяется согласно [8]. При расчете V3 можно принять, что дополнительный сток DV3, определяемый положением нижней точки контура повреждения относительно поверхности трубы и профиля участков нефтепровода, примыкающих к месту повреждения, незначителен. Время прекращения истечения определяется временем стока нефти из отсеченного участка или временем прибытия аварийно-восстановительных бригад, которое определяется экспертным путем с учетом разработанных планов ликвидации аварий рассматриваемого нефтепровода.

 

2. ОЦЕНКА ПЛОЩАДИ ЗАГРЯЗНЕНИЯ ЗЕМЕЛЬ И ВОДНЫХ ОБЪЕКТОВ

 

С точки зрения тяжести экологических последствий в общем случае можно выделить три типа условий взаимного расположения места аварии на нефтепроводах с природными объектами:

- аварии на участках вдали от водных объектов;

- аварии на подводных переходах нефтепровода;

- аварии вблизи водоемов и водотоков.

В первом случае весь объем вылившейся нефти распределяется по поверхности суши. Площадь первичного загрязнения и глубина проникновения в почву существенно зависят от шероховатости поверхности (микро- и макрорельеф, пористость, трещиноватость и др.).

Для приближенных расчетов площади загрязнения земли Sз с учетом мероприятий по сбору разлившейся нефти используется формула

,                                           (П.3.12)

где Мз масса потерянной нефти (средняя по различным сценариям), определяемая по формуле (П.3.2). Для получения более точных оценок или для особо важных объектов таких, как заповедники, зеленые зоны городов и т. п. определяется с привлечением экспертов-почвоведов.

Приближенная оценка площади загрязненной водной поверхности Sр производится по формуле:

Sp = Vp/0,003,

где Vp объем разлившейся нефти, попавшей в водные объекты, м3,

Sp площадь загрязненной водной поверхности, м2, если площадь зеркала водоема Sв < Sр, то Sр = Sв.

При авариях вблизи водоемов и водотоков соотношение объема нефти, загрязнившей сушу, и объема нефти, попавшей в водные объекты, существенно зависит от взаимного расположения нефтепровода и водных объектов, макрорельефа прилегающей территории, наличия защитных сооружений, а также объема вылившейся нефти V. Определение отношения для каждого такого участка нефтепровода производится экспертным путем.

 

 

ПРИЛОЖЕНИЕ 4

 

ОЦЕНКА ПОКАЗАТЕЛЕЙ РИСКА АВАРИЙНЫХ РАЗЛИВОВ НА МН

 

Оценка риска разлива нефти является этапом сочетания (объединения) значений частот и последствий аварий, определяемых согласно приложениям 2 и 3.

Для каждого расчетного участка под номером n и длиной Ln (рис. 2) производится оценка одного или несколько следующих показателей риска:

1) Ожидаемые среднегодовые потери товарной нефти за счет аварийных разливов Rv (объем или масса потерь).

2) Ожидаемая среднегодовая площадь загрязнения сухопутных ландшафтов Rst и водных объектов Rsr.

3) Ожидаемый среднегодовой экологический ущерб как сумма штрафных санкций за загрязнение компонентов природной среды Rd.

4) Показатели, характеризующие эффективную площадь выведения из естественного состояния сухопутных ландшафтов Ret и водных объектов Rer.

Для приближенных консервативных (максимальных) оценок расчет ожидаемых объемов разлива нефти производится по формуле:

,

где объем Vmax определяется согласно приложению 3 из условия "гильотинного" разрыва нефтепровода (dотв = D); коэффициент сбора Kсб = 0,5 при величинах интервалов времени остановки перекачки t1 = 15 мин и времени перекрытия задвижек t2 = 30 мин. Аналогичные консервативные условия, соответствующие "максимально проектной аварии", принимаются для расчета остальных показателей риска.

Для более точных расчетов необходимо учитывать вероятностные характеристики параметров аварийного истечения, в том числе вероятность образования дефектных отверстий определенной площади Sэфф, распределение интервалов времени остановки насосов, перекрытия потоков и других параметров по частоте реализации li, а также соответствующие этим частотам определенные последствия. Ниже дан алгоритм такого расчета.

1. Производится оценка частоты аварий на участке за год (n для данного участка по формулам (П.2.1) и (П.2.2) с использованием балльной оценки надежности участка нефтепровода (приложение 5).

2. Рассчитывается среднее (по сценариям аварий) количество нефти Мз, вытекающее при аварии, согласно по формуле (П.3.2), а также площадей загрязнения земель и водных объектов по формулам (П.3.12), (П.3.13).

3. Определяется средний (по времени эксплуатации) ожидаемый объем потерь нефти участка Rv (кг/год) по формуле (П.3.2).

4. Производится оценка риска загрязнения сухопутных ландшафтов Rst по формуле:

,                                                      (П.4.2)

где Sз — среднее (по сценариям аварий) значение загрязненных площадей земли, определяемое по формуле (П.3.12).

5. Производится оценка риска загрязнения водных объектов Rsr по формуле:

,                                                     (П.4.3)

где Sp среднее (по сценариям аварий) загрязненной площади водного объекта, определяемое по формуле (П.3.13).

Для прибрежной полосы объем разлива делится на "сухопутную" и "водную" части в соответствии с экспертной оценкой данного участка трассы. Значения Rst, Rsr дают искомые оценки риска аварий на 1 км для каждого участка с номером п. Умножение указанных значений на длину Ln определяет риск аварий рассматриваемого участка. Суммирование рисков по всем участкам дает оценку риска загрязнения сухопутных ландшафтов и водных объектов для трассы нефтепровода в целом.

При необходимости определяются следующие частные показатели экологического риска Ret. и Rer.

Оценка риска Ret, характеризующего эффективную площадь сухопутных ландшафтов, выведенную из естественного состояния вследствие возможной аварии на участке длиной Ln, производится по формуле:

,                                               (П.4.4)

где tсвз — время самовосстановления земли, определяемое из данных по экологическому обследованию нефтепровода. Для определения tсвз рекомендуется использовать приложение 6. При этом частота аварий на данном участке равна  (1/год), а вероятность нахождения этой площади в загрязненном состоянии равна .

Суммирование рисков по всем участкам дает оценку эффективной площади загрязнения сухопутных ландшафтов для МН в целом.

Оценка риска Rer, характеризующего эффективную площадь загрязнения водных объектов, производится по формуле:

,                                          (П.4.5)

где Sp оценивается с использованием формулы (П.3.13), время самовосстановления водных объектов tсвр для каждого участка n по приложению 7.

Суммирование рисков по всем участкам дает суммарные значения вышеуказанных показателей риска для МН в целом.

Оценка риска Rd финансовых убытков при компенсации вреда, причиненного аварией окружающей природной среде, для каждого участка с индексом n производится по соотношению:

,                                             (П.4.6)

где ущербы от загрязнения компонентов природной среды (водных объектов, земель, атмосферы) рассчитываются на основе удельных показателей ущерба, приведенных в приложении 6, по формулам:

,

,

,

где значения удельных экологических ущербов , ,  определяются по приложению 6.

 

 

ПРИЛОЖЕНИЕ 5

 

БАЛЛЬНАЯ ОЦЕНКА ФАКТОРОВ ВЛИЯНИЯ СОСТОЯНИЯ

НЕФТЕПРОВОДА НА СТЕПЕНЬ РИСКА

 

ГРУППА 1. ВНЕШНИЕ АНТРОПОГЕННЫЕ ВОЗДЕЙСТВИЯ

В группу 1 входят внешние по отношению к рассматриваемой нефтепроводной системе факторы (табл. П.5.1), влияющие на вероятность повреждения МН со стороны третьих лиц.

 

Таблица П.5.1

 

Обозначение и наименование фактора влияния в первой группе

Доля в группе q1j

F11

Минимальная глубина заложения подземного нефтепровода

0,2

F12

Уровень антропогенной активности

0,2

F13

Степень защиты наземного оборудования

0,1

F14

Состояние охранной зоны

0,1

F15

Частота патрулирования (обходов, облетов)

0,15

F16

Согласование со сторонними организациями проведения работ в охранной зоне

0,15

F17

Разъяснительные мероприятия в отношении населения и персонала вневедомственных предприятий

0,1

 

Фактор F11: Минимальная глубина заложения подземного нефтепровода

 

В качестве глубины минимального заложения h необходимо рассматривать фактическую толщину слоя грунта над верхней образующей самого мелкозаглубленного отрезка анализируемого участка МН, независимо от протяженности этого отрезка. В соответствии с [13] требуемая минимальная глубина заглубления варьируется в зависимости от диаметра и назначения нефтепровода, а также от местных грунтовых условий и характера землепользования от 0,6 до 1,1 м от земной поверхности образующей нефтепровода (в среднем h = 0,9 м).

Балльное значение для фактической глубины заложения на наземном отрезке линейной части МН рассчитывается по следующим формулам:

при 0,6 < h < 1,8 (м)

B11 = 0,83 × (1,8 - h),

при 0 < h < 0,6 (м)

B11 = 1 + 25 × (h - 0,6)2,

где: h = hгр + hдоп; hгр — толщина слоя грунта над верхней образующей нефтепровода, м;

hдоп толщина слоя грунта, м, эквивалентная толщине дополнительного механического защитного покрытия нефтепровода, определяемая в соответствии с данными табл. П.5.2.

 

 

 

Таблица П.5.2

 

Тип и толщина дополнительного покрытия

Эквивалентная толщина слоя грунта, hдоп, м

Бетонное покрытие толщиной 0,5 м

0,2

Бетонное покрытие толщиной 0,1 м

0,6

Защитный кожух (футляр)

0,6

Железобетонная плита

0,6

 

Для подводных переходов роль основной защиты от механического повреждения играет глубина заложения нефтепровода в донный грунт hгр и дополнительные защитные покрытия (бетонное покрытие на поверхности трубы (наряду с футеровкой) или железобетонная плита над нефтепроводом). Кроме того, определенную роль играет глубина водоема.

В соответствии с требованиями [13] слой грунта до верхней образующей (с учетом балластировочных грузов или бетонного покрытия) должен составлять не менее 1,0 м.

В соответствии со статистическими данными средняя глубина водоемов hв в створах действующих подводных переходов (расстояние от зеркала воды до дна в створе перехода) составляет 4,0 м.

Балльное значение на переходах через водные преграды для комбинации фактической глубины заложения, глубины водоема и типа перехода рассчитывается следующим образом:

при 0 < (hгр + hдоп) < 3,0 м и 0 < hв < 4,0м

В11 = 0,444×(hгр + hдоп - 3,0) + 1,875×10-3×(hв - 4,0)2 + Bm;

при (hгр + hдоп) > 3,0 м или hв > 4,0 м

B11 = 0,

где: hв — фактическая глубина водоема над самым мелкозаглубленным (в грунт) участком перехода; Вm = 0 — для переходов, отнесенных к категории В; Вm = 1 для переходов, отнесенных к категории I; Bm = 2 — для переходов, отнесенных к категории II; Bm = 3 — для переходов, отнесенных к категории III, в соответствии с табл. 3* [13].

При отсутствии информации о реальном состоянии подводного перехода B11 выбирается равным 6.

 

Фактор F12: Уровень антропогенной активности

 

В табл. П.5.3 приведены значения отдельных составляющих фактора F12 и соответствующие им балльные оценки В12(m), где m — номер составляющей.

Итоговая балльная оценка для данного фактора рассчитывается как сумма балльных оценок вышеприведенных 4 составляющих:

.

Таблица П.5.3

 

т

Наименование составляющей т фактора F12

уровень антропогенной активности

1

Плотность населения (Hнас) в среднем в трехкилометровой полосе вдоль трассы:

 

 

- 0 < Hнас < 50 чел./км2

0,06 × Hнас

 

- Hнас > 50 чел./км2

3

2

Проведение в охранной зоне нефтепровода строительных, взрывных, изыскательских и т. п. работ (на сухопутных участках) и дноуглубительных, землечерпательных работ, прохождение судов с отданными якорями, цепями, волокушами, тралами в районах подводных переходов:

 

 

- частое или систематическое без согласования с РНУ (АО МН)

3

 

- случайное без согласования с РНУ (АО МН)

 

 

- только с письменного разрешения РНУ (АО МН)

0,5

 

- никаких регулярных работ не проводится, а случайных за период эксплуатации нефтепровода не наблюдалось

0

3

Наличие трубопроводов и других коммуникаций иной ведомственной принадлежности в охранной зоне нефтепровода:

 

 

- большое количество (> 2)

2

 

- небольшое количество (£ 2)

0,5

 

- вневедомственные коммуникации отсутствуют

0

4

Наличие участков автомобильных и железных дорог в пределах охранной зоны нефтепровода:

 

 

- присутствуют

2

 

- отсутствуют

0

 

Фактор F13: Степень защиты наземного оборудования

 

Балльная оценка защищенности наземного оборудования линейной части МН (узлы линейных задвижек, площади пуска и приема очистных устройств, воздушные переходы) от возможных актов вандализма, наезда транспортных средств и т. п. рассчитываются как сумма балльных оценок отдельных составляющих этого фактора  (табл. П.5.4) по формуле:

.

В случае отсутствия на рассматриваемом участке трассы наземного оборудования балльная оценка принимается равной 0.

 

Таблица П.5.4

 

т

Наименование составляющей т фактора F13

степень защиты наземного оборудования

1

Наличие и материал ограждения наземного оборудования:

 

 

- ограждение отсутствует

3

 

- деревянный забор или ограда из тонкой арматуры высотой не более 1,0-1,2 м

1

 

- прочное стальное ограждение из труб

0

2

Наличие между авто- или железной дорогой и наземным оборудованием дополнительного "барьера":

 

 

- "барьер" отсутствует

3

 

- траншея или ров глубиной и шириной не менее 1,2 м

1

 

- лесопосадка или ряд бетонных столбиков

0

3

Расстояние от авто- или железной дороги до площадки наземного оборудования:

 

 

- менее 25 м

3

 

- 25 ... 45 м

2

 

- 45 ... 55 м

1

 

- более 50 м

0

4

Наличие предупреждающих и запрещающих знаков:

 

 

- отсутствуют

1

 

- присутствуют

0

 

Фактор F14: Состояние охранной зоны МН

 

Балльная оценка состояния охранной зоны определяется как сумма балльных оценок 2 составляющих данного фактора по табл. П.5.5

 

Таблица П.5.5

 

т

Наименование составляющей т фактора F14

состояние охранной зоны участка МН

1

Степень расчистки охранной зоны:

 

 

- полоса расчищена в соответствии с требованиями ПТЭ

0

 

- возможен обзор трассы с земли и воздуха

1

 

- полоса расчищена неравномерно

2

 

- имеют место поросшие зеленью участки (с земли и воздуха трасса просматривается нечетко)

3

 

- полоса полностью поросла зеленью, трасса неразличима

5

2

Закрепление трассы знаками:

 

 

- установлены все знаки в соответствии с ПТЭ

0

 

- установлены все знаки, но некоторые из них плохо просматриваются (например, из-за некачественной покраски)

1

 

- не все знаки установлены, требуется установка дополнительных знаков у авто- и железных дорог, водных переходов

2

 

- отсутствие большей части знаков

3

 

- полное отсутствие знаков закрепления трассы

5

 

Фактор F15: Частота патрулирования

 

Балльная оценка фактора выбирается непосредственно из табл. П.5.6 и соответствует фактической частоте обходов на рассматриваемом участке трассы.

 

Таблица П.5.6

 

т

Наименование составляющей т фактора F15

частота обходов участка МН

1

Ежедневные обходы

0

2

4 раза в неделю

1

3

3 раза в неделю

1,5

4

2 раза в неделю

2

5

1 раз в неделю

3

6

От 1 до 3 раз в месяц

5

7

Менее 1 раза в месяц

8

8

Патрулирование трассы не проводится

10

 

Фактор F16: Согласование со сторонними организациями

проведения работ в охранной зоне МН

 

Балльная оценка для данного фактора определяется как сумма бальных оценок его составляющих по табл. П.5.7

 

Таблица П.5.7

 

т

Наименование составляющей т фактора F16

согласование со сторонними организациями проведения работ

в охранной зоне МН

1

Наличие системы согласования на предмет проведения работ в охранной зоне между сторонними организациями и РНУ (АО МН):

 

 

- отсутствует

3

 

- имеет место

0

2

Наличие планово-картографических материалов о фактическом расположении нефтепровода и его отводов:

 

 

- имеются у районной администрации

0

 

- отсутствуют у районной администрации

1

3

Наличие планово-картографических материалов о фактическом расположении нефтепровода и его отводов:

 

 

- имеются у предприятий-землепользователей

0

 

- отсутствуют у предприятий-землепользователей

3

4

Случаи несанкционированного проведения работ в охранной зоне за все время эксплуатации нефтепровода:

 

 

- не имели места

0

 

- имел место 1 случай

1

 

- имели место неоднократно

3

 

Фактор F17: Разъяснительные мероприятия в отношении населения и персонала предприятий иной ведомственной принадлежности

 

Балльная оценка для данного фактора определяется как сумма бальных оценок его составляющих по табл. П.5.8.

Составляющие факторов и их балльные значения могут уточняться применительно к конкретным МН по согласованию с представителями эксплуатирующей организации.

 

Таблица П.5.8

 

т

Наименование составляющей т фактора F17

разъяснительные мероприятия в отношении населения и персонала

предприятий иной ведомственной принадлежности

1

Работа РНУ (АО МН) по уведомлению населения о расположении трассы и ознакомлению с правилами поведения в охранной зоне МН:

 

 

- не проводится

4

 

- проводится не систематически

1,5

 

- проводится систематически

0

2

Работа РНУ (АО МН) по уведомлению рабочих и персонала низового звена управления строительных, промысловых и им подобных предприятий иной ведомственной принадлежности о расположении трассы и обучению их правилам ведения работ в охранной зоне нефтепровода:

 

 

- не проводится

4

 

- проводится не систематически

1,5

 

- проводится систематически

0

 

ГРУППА 2. КОРРОЗИЯ

 

Данная группа факторов оценивает объективно существующие на трассе условия, способствующие интенсификации почвенной коррозии (коррозионной активности грунтов, обводненности, других подземных металлических сооружений, в том числе токопроводящих), и эффективности пассивной и активной защиты нефтепровода от агрессивных коррозионных воздействий. Факторы, входящие в данную группу, перечислены в табл. П.5.9.

 

Таблица П.5.9

 

Обозначение и наименование фактора влияния во второй группе

Доля в группе, q2j

F21

Наличие и качество работы устройств ЭХЗ

0,20

F22

Состояние изоляционного покрытия

0,20

F23

Коррозионная активность грунта

0,10

F24

Продолжительность эксплуатации нефтепровода без замены изоляционного покрытия

0,10

F25

Наличие подземных металлических сооружений и энергосистем вблизи нефтепровода

0,14

F26

Проведение измерений с целью контроля эффективности ЭХЗ

0,13

F27

Контроль защищенности нефтепровода

0,13

 

Фактор F21: Наличие и качество работы устройств ЭХЗ

 

Балльная оценка данного фактора рассчитывается как сумма балльных оценок 3 составляющих по табл. П.5.10.

 

 

 

 

 

Таблица П.5.10

 

т

Наименование составляющей т фактора F21

наличие и качество работы устройств ЭХЗ

1

Защищенность МН в зависимости от протяженности ЭХЗ Lэхз — сохранение разности потенциалов "труба—земля" в пределах от -0,85 до 1,2 В:

 

 

- Lэхз = 100%

0

 

- 85% < Lэхз < 99%

1

 

- Lэхз < 85%

3

2

Срок ввода ЭХЗ в эксплуатацию на данном участке:

 

 

- одновременно с нефтепроводом

0

 

- менее, чем через 1 год после начала эксплуатации нефтепровода

1

 

- через 1-2 года после начала эксплуатации нефтепровода

2,5

 

- через 3-4 года после начала эксплуатации нефтепровода

3,5

 

- через 5-7 лет после начала эксплуатации нефтепровода

4

3

Периодичность технического осмотра, профилактического обслуживания и проверки работы средств ЭХЗ:

 

 

- в соответствии с ПТЭ (не реже 2 раз в месяц на УКЗ, 4 раза в месяц на УДЗ и 1 раз в полгода на УПЗ)

0

 

- с незначительными отклонениями от ПТЭ

1

 

- с грубыми нарушениями сроков

2

 

Фактор F22: Состояние изоляционного покрытия

 

Итоговая балльная оценка по данному фактору складывается из балльных оценок 4 составляющих, приведенных в табл. П.5.11. При отсутствии изоляции В22 = 10.

 

Таблица П.5.11

 

т

Наименование составляющей т фактора F22

состояние изоляционного покрытия

1

Соответствие применяемого материала и конструкции покрытия условиям окружающей среды и конструктивным параметрам нефтепровода:

 

 

- тип покрытия полностью соответствует существующим внешним условиям и диаметру нефтепровода

0

 

- в целом адекватная изоляция, но по некоторым параметрам она не точно соответствует специфическим условиям эксплуатации

1,5

 

- нанесенная изоляция не пригодна для долгосрочной службы в данных условиях

2,5

2

Качество нанесения изоляционного покрытия:

 

 

- применяется покрытие заводского нанесения

0

 

- нанесение покрытий в трассовых условиях производилось в полном соответствии с требованиями СНиП III-42-80 в присутствии представителя технадзора заказчика

0

 

- нанесение покрытий в трассовых условиях выполнялось со значительными отклонениями от требований СНиП (грунтовка нанесена не сразу после очистки и осушки или не точно соблюдены температурные пределы нанесения грунтовки или покрытия и т. п.)

1

 

- нанесение покрытий в трассовых условиях выполнялось со значительными отклонениями от требований СНиП (без тщательной очистки поверхности, без соблюдения температурных пределов нанесения и т. п.)

2

 

- нанесение изоляции в трассовых условиях выполнено неправильно, с пропуском ряда важных операций

2,5

3

Качество и периодичность контроля состояния покрытия:

 

 

- полный контроль состояния изоляции (поиск дефектов методом выносного электрода или искателем повреждений, измерение переходного сопротивления, защитного тока, толщины, сплошности, адгезии) квалифицированным персоналом не реже 1 раза в 2 года с немедленной передачей сведений в РНУ (АО МН)

0

 

- полный контроль состояния изоляции не реже 1 раза в 2,5-3 года или неполный (при отсутствии 1 типа измерений) не реже 1 раза в 2 года, но достаточно квалифицированным персоналом

1,5

 

- нерегулярный и редкий (реже 1 раза в 3 года) контроль

2

 

- редкий контроль с недостаточным приборным оснащением

2,5

4

Качество ремонта изоляции:

 

 

- сведения об обнаруженных дефектах покрытия немедленно регистрируются в специальной документации, существует график ремонтов, отремонтированные покрытия соответствуют требованиям, предъявляемым к основным покрытиям

0

 

- сведения об обнаруженных дефектах регистрируются регулярно, ремонты производятся по мере возможности, хотя и достаточно качественно

1,5

 

- сведения об обнаруженных дефектах регистрируются нерегулярно, ремонты производятся хаотично и недостаточно качественно

2

 

- сведения об обнаруженных дефектах не регистрируются, ремонты не производятся

2,5

 

Фактор F23: Коррозионная активность грунта

 

Коррозионные свойства грунта зависят от его температуры, влажности, пористости, газопроницаемости, содержания солей — характеристик, которые интегрированы в удельном сопротивлении грунта rг. Балльная оценка данного фактора складывается из балльных оценок 3 составляющих (табл. П.5.12). В том случае, если сумма баллов превышает 10 (или при отсутствии данных о свойствах грунта), В23 = 10.

 

Таблица П.5.12

 

т

Наименование составляющей т фактора F23

коррозионная активность грунта

1

Удельное сопротивление грунта rг, Ом × м:

 

 

- rг £ 5

10

 

- 5 < rг £ 20

12-0,4×rг

 

- 20 < rг £ 100

5-0,05×rг

 

- rг > 100

0

7

Кислотность грунта, pH:

 

 

- 3 £ pH £ 7

8,75-1,25×pH

 

- pH > 7

0

3

Деятельность микроорганизмов:

 

 

- имеет место

2

 

- отсутствует

0

 

Фактор F24: Продолжительность эксплуатации МН без замены

изоляционного покрытия

 

Балльная оценка данного фактора рассчитывается по формулам:

при tэксп £ 8 лет

В24 = 0,25 tэксп,

при 8 < tэксп £ 20 лет

В24 = -3,33 + 0,66 tэксп,

при tэксп > 20 лет

В24 = 10,

где tэксп продолжительность эксплуатации МН, лет.

 

Фактор F25: Наличие подземных металлических сооружений и энергосистем

вблизи нефтепровода

 

Балльная оценка протяженности зон электрохимического взаимодействия МН с другими металлическими подземными и наземными сооружениями (в том числе электрифицированными), линиями электропередачи рассчитывается как сумма оценок 2 составляющих (табл. П.5.13). В случае, когда сумма баллов превышает 10, принимается значение B25 =10.

 

Таблица П.5.13

 

т

Наименование составляющей т фактора F25

наличие подземных металлических сооружений и энергосистем

вблизи нефтепровода

1

Количество находящихся в пределах 200 м от трассы металлических сооружений на анализируемом участке:

 

 

- ни одного

0

 

- 1-10

3

 

- 11-25

7

 

- > 25

10

2

Наличие энергосистем постоянного и переменного тока:

 

 

- отсутствуют в пределах 200 м от трассы

0

 

- присутствуют, но предусмотрена защита от блуждающих токов

5

 

- присутствуют, защита от блуждающих токов отсутствует

10

 

Фактор F26: Проведение измерений с целью контроля эффективности ЭХЗ

 

Балльная оценка рассчитывается как сумма балльных оценок 2 составляющих (табл. П.5.14).

 

Таблица П.5.14

 

т

Наименование составляющей т фактора F26

проведение измерений с целью контроля эффективности ЭХЗ

1

Расстояния Lкв между катодными выводами и проведение контроля вблизи других металлических сооружений:

 

 

- Lкв < 1,0 км, контроль всех критичных участков

0

 

- 1,0 < Lкв < 3,0 км, контролируются все пересечения с другими подземными нефтепроводами и другие критичные участки, но не все переходы через искусственные препятствия

1,5

 

- между некоторыми катодными выводами Lкв > 3,0 км, не все критичные участки контролируются

3

2

Частота fкит (раз/год) проведения измерений в КИТ:

 

 

- fкит > 2

0

 

- 1 < fкит < 2

5

 

- fкит < 1

10

 

Фактор F27: Контроль защищенности нефтепровода

Балльная оценка контроля защищенности нефтепровода определяется временем tкит (количеством лет), прошедшим с момента проведения последних измерений в КИТ (табл. П.5.15).

 

Таблица П.5.15

 

m

Наименование составляющей т фактора F27

контроль защищенности нефтепровода

1

tкит £ 5лет

0,2×tкит2

2

10 ³ tкит > 5лет

tкит

3

tкит > 10 лет

10

 

ГРУППА 3. КАЧЕСТВО ПРОИЗВОДСТВА ТРУБ

 

Влияние производственных факторов на вероятность аварии связано с возможным наличием дефектов поставляемых труб и оборудования. В составе данной группы факторов целесообразно также рассматривать продолжительность эксплуатации нефтепровода, которая существенно влияет на аварийное проявление (утечки, разрывы) производственных дефектов труб.

В данной группе учитываются 3 фактора влияния (табл. П.5.16)

 

Таблица П. 5.16

 

Обозначение и наименование фактора влияния в третьей группе

Доля в группе, q3j

F31

Технология изготовления и марка стали труб

0,5

F32

Поставщик труб

0,3

F33

Продолжительность эксплуатации участка нефтепровода

0,3

 

Фактор F31: Технология изготовления и марка стали труб

 

Балльная оценка фактора выбирается непосредственно из табл. П.5.17 в соответствии с эксплуатируемым на анализируемом участке типом труб.

 

Таблица П.5.17

 

№ п/п

Наименование фактора F31 — технология изготовления и марка стали труб

B31

1

Трубы сварные (прямошовные и спиральношовные) из мало-перлитной и бейнитной стали контролируемой прокатки и термически упрочненные, изготовленные двухсторонней электродуговой сваркой под флюсом по сплошному технологическому шву, с минусовым допуском по толщине стенки не более 5% и прошедшие 100-процентный контроль на сплошность основного металла и сварных соединений неразрушающими методами.

Марки стали: 08Г2ФБТ, 10Г2Т, 10Г2БТ, 10Г2ФБ, Х70, 09Г2БТ, 08Г2ФЮ, 08Г2Т-У, 117Г1С-У, 17ГС-У, 10Г2БТЮ1, 10Г2БТЮ2, 10Г2ФБЮ1.

Импортные: по ТУ 100-86, ТУ 75-86, ТУ 530-89МГ, ТУ 20-88, ТУ56-83.

0

2

Трубы сварные (прямошовные и спиральношовные) из нормализованной, термически упрочненной стали и стали контролируемой прокатки (17ГС, 17Г1С, 13Г2АФ, 17Г1С-У) и термически упрочненные трубы, изготовленные двухсторонней электродуговой сваркой под флюсом по сплошному технологическому шву и прошедшие 100-процентный контроль сварных соединений неразрушающими методами. Бесшовные из катаной или кованой заготовки (09Г2С, 20), прошедшие 100-процентный контроль неразрушающими методами, бесшовные горячедеформированные (13ГФА, 12ГА, 16ГА) (малый диаметр)

4

3

Трубы сварные (прямошовные и спиральношовные) из нормализованной и горячекатаной низколегированной стали (08Г2Т, 08Г2Т-У, 13Г2АФ, 08ГБЮТ, 17ГС, 17Г1С) и термически упрочненные трубы, изготовленные двухсторонней электродуговой сваркой и прошедшие 100%-й контроль сварных соединений неразрушающими методами.

Бесшовные холодно- и горячедеформированные (10Г2, 20), прошедшие 100%-й контроль неразрушающими методами, электросварные из углеродистой и низколегированной стали (Вст, 3сп, 10сп, 10, 20, 09Г2СФ, 08ГБЮТ, 08ГБЮТР) — малый диаметр.

7

4

Трубы сварные из горячекатаной низколегированной или углеродистой стали, изготовленные двухсторонней электродуговой сваркой или токами высокой частоты (17Г1С, 17Г1С-У нетермообработанные, импортные по ТУ 22-28-88 с 50% УЗ-контролем, TУ 20-28/92 VSZ).

Бесшовные трубы из углеродистой и низколегированной стали 10, 20, 10Г2, бесшовные горячедеформированные (20ЮТ, 15ГЮТ, ТУ 387-90), из катаной заготовки (10, 20, 10Г2, 09Г2), электросварные (10, 20, Ст3сп, 10сп) — малый диаметр.

10

 

 

 

Фактор F32: Поставщик труб

 

Таблица П.5.18

 

№ п/п

Наименование фактора F32 — поставщик труб

B32

1

ФРГ, Италия, Япония

0

2

Харцызский трубопрокатный завод

2

3

Выксунский металлургический завод

Новомосковский трубный завод

4

4

Челябинский трубопрокатный завод

Волжский трубный завод

6

5

Другие отечественные заводы, Болгария, Чехия

9

 

Фактор F33: Продолжительность эксплуатации участка нефтепровода (tэксп)

 

Таблица П.5.19

 

№ п/п

Наименование фактора F33

продолжительность эксплуатации участка МН

B33

1

0 < tэксп £ 4 года

9

2

4 < tэксп £ 15лет

3

3

tэксп > 15 лет

6

 

ГРУППА 4. КАЧЕСТВО СТРОИТЕЛЬНО-МОНТАЖНЫХ РАБОТ

 

Некачественное или неправильное выполнение строительно-монтажных работ (СМР) чревато появлением дефектов труб и изоляционного покрытия, возникновением дополнительных напряжений в нефтепроводе, нарушением его устойчивости, что в свою очередь значительно повышает вероятность возникновения аварии на этапе эксплуатации. Качество СМР зависит от многих факторов, среди которых важное место занимают сложность трассы, климатические условия, уровень квалификации строителей, контроль всех строительных операций, адекватность и качество материалов, условия их транспортировки и хранения (табл. П.5.20).

 

Таблица П.5.20

 

Обозначение и наименование фактора влияния в четвертой группе

Доля в группе, q4j

F41

Категория участка по сложности производства работ

0,15

F42

Уровень "комфортности" производства работ

0,15

F43

Контроль качества строительных работ

0,25

F44

Контроль качества сварных соединений

0,25

F45

Адекватность применяемых материалов и изделий

0,1

F46

Качество хранения и обращения с материалами

0,1

 

Фактор F41: Категория участка по сложности производства работ

 

Сложность трассы, характеризуемая степенью пересеченности и обводненности местности, наличием мерзлых грунтов и т. п., влияет на условия и передвижения и работы строительных машин и механизмов, их энергообеспечения, трудоемкость всех технологических операций.

Балльная оценка фактора выбирается непосредственно из табл. П.5.21 в зависимости от того, к какой категории относится анализируемый участок.

 

 

 

 

 

 

Таблица П.5.21

 

№ п/п

Наименование фактора F41

категория участка МН по сложности производства работ

В41

1

Участки I категории сложности (подводные и надводные переходы через реки шириной более 50 м, болота II и III типов, барханные незакрепленные пески, продольные уклоны крутизной более 30‰ и протяженностью более 100 м, горные участки, вечномерзлые грунты)

9

2

Участки II категории сложности (подводные и надводные переходы через реки шириной до 50 м, болота I типа, закрепленные барханные пески, продольные уклоны крутизной до 33‰, косогорные участки с боковой крутизной до 15‰, подземные и воздушные переходы через железные дороги; отдельные продольные уклоны с крутизной более 30‰ и протяженностью менее 100 м, овраги и балки)

6

3

Участки III категории сложности (отдельные продольные уклоны крутизной до 30‰ малой протяженности, косогорные участки с малой крутизной, подземные и воздушные переходы через автодороги, балки)

2

4

Равнинные участки

0

 

Фактор F42: Уровень "комфортности" производства работ

 

Данный фактор учитывает влияние неблагоприятных климатических и местных природных условий (холода, жары, сырости) для работы строителей на качество выполнения основных технологических операций, в частности ручной дуговой сварки стыков. Балльная оценка фактора выбирается непосредственно из табл. П.5.22 в зависимости от принадлежности анализируемого участка к тому или иному климатическому району (КР) в пределах России, местности и сезона строительства. Обозначения КР приводятся в соответствии с [5].

 

Таблица П.5.22

 

№ п/п

Наименование фактора F42

климатический район и сезон проведения СМР

В41

1

От умеренно холодного до умеренно теплого (II4, II5, II6, II7, II8, II9); лето

1

2

Умеренно теплый с мягкой зимой (II9); весна, осень

2

3

От умеренно холодного до умеренно теплого (II4, II5, II6, II7); зима

3

4

Умеренно теплый влажный, умеренно теплый с мягкой зимой (II8, II9); зима

4

5

Холодный, очень холодный (I1, I2); весна

5

6

Арктический (II2, II3); весна, осень, лето

6

7

Арктический, холодный, очень холодный (I1, I2, II2, II3); зима

7

8

От умеренно холодного до умеренно теплого (II4, II5, II6, II7); весна, осень

9

9

От умеренно холодного до умеренно теплого (II4, II5, II6, II7); холодный, очень холодный (I1, I2); весна, лето, осень (болотистая местность)

10

10

Арктический, холодный, очень холодный (I1, I2, II2, II3); лето (болотистая местность)

10

 

Фактор F43: Контроль качества строительных работ

 

Влияние данного фактора определяется полнотой и тщательностью контроля качества земляных, изоляционно-укладочных работ и обратной засыпки (контроль качества сварных соединений выделен в отдельный фактор), позволяющего вовремя выявить нарушения проекта и установленных допусков. Балльная оценка выбирается из табл. П.5.23.

 

 

 

 

 

 

Таблица П.5.23

 

№ п/п

Наименование фактора F43 — контроль качества строительных работ

B43

1

Производителями работ осуществлялся операционный контроль качества по всем технологическим процессам, был произведен выборочный контроль качества всех видов работ представителями заказчика, органами госнадзора и госинспекции, о чем свидетельствуют соответствующие документы

9

2

Производителями работ осуществлялся операционный контроль качества по всем технологическим процессам, был произведен выборочный контроль качества отдельных видов работ представителями заказчика, о чем свидетельствуют соответствующие документы

1

3

Производителями работ осуществлялся операционный контроль качества по всем технологическим процессам, о чем свидетельствуют соответствующие документы

6

4

Производителями работ осуществлялся операционный контроль качества, однако в документации это отражено слабо

2

5

0 производимых проверках качества работ ничего не известно

0

 

Фактор F44: Контроль качества сварных соединений

 

Влияние данного фактора на вероятность возникновения аварийных утечек нефти из МН определяется полнотой охвата сварных стыков в пределах анализируемого участка контролем физическими методами как наиболее объективным видом контроля. Балльная оценка рассчитывается по следующим формулам:

- для участков категорий В, I, II, III

при 55 % £ Kсв £ 100%

В44 = 22 - 0,22 × Kсв,

при Kсв < 55 %

В44 = 10

- для участков IV категории

при Kсв < 10 %

В44 = 10

при 10 % £ Kсв £ 20 %

В44 = 15 - 0,5 × Kсв

при 20 % < Kсв £ 100%

В44 = 7,8 × 10-4 × (Kсв - 100)2,

где Kсв — процент охвата сварных стыков контролем физическими методами.

 

Фактор F45: Адекватность применяемых материалов и изделий

 

Применение при строительстве МН материалов и изделий (труб, изоляционных покрытий, защитных механических покрытий, балластировочных устройств, арматуры, вставок, мягкой подсыпки и засыпки), не соответствующих проекту, может привести к аварии на этапе эксплуатации. Балльная оценка выбирается из табл. П.5.24, исходя из наличия документации, свидетельствующей о применении материалов и изделий на этапе строительства анализируемого участка строго по проекту.

 

Таблица П.5.24

 

№ п/п

Наименование фактора F45

адекватность применяемых материалов и изделий

В45

1

Имеется в наличии вся документация, свидетельствующая о применении строго соответствующих проекту материалов и изделий, а также сертификаты, паспорта, другие документы, подтверждающие качество примененных материалов и изделий

0

2

Имеющаяся документация свидетельствует о произведенных заменах материалов и изделий, требуемых по проекту, на подобные по основным характеристикам

1,5

3

При отсутствии части подтверждающей документации, существуют свидетельства персонала об отсутствии нарушений проектных требований в части примененных материалов и изделий

3

4

Существуют документальные свидетельства о применении на этапе строительства материалов и изделий, не соответствующих проекту и в той или иной степени отличающихся от проектных по основным характеристикам в худшую сторону

8

5

Отсутствие документации, подтверждающей применение материалов и изделий в соответствии с проектом

10

 

Фактор F46: Качество хранения и обращения с материалами

 

Балльная оценка зависит от условий транспортировки материалов до места строительства (дальность перевозки, число перегрузок, приспособленность транспортных средств), условий хранения до момента установки, режимов подготовки материалов к установке, аккуратности обращения с ними во время проведения технологических операций и рассчитывается как сумма балльных оценок 3 составляющих (табл. П.5.25).

 

Таблица П.5.25

 

т

Наименование составляющей т фактора F46

качество хранения и обращения с материалами

1

Условия транспортировки:

 

 

- транспортировка на специальных транспортных средствах в требуемом положении с амортизирующими прокладками и минимальным числом погрузок-разгрузок щадящими способами

0

 

- транспортировка на специальных транспортных средствах в требуемом положении с амортизирующими прокладками, но с большим числом погрузок-разгрузок

2

 

- транспортировка на неприспособленном транспорте или в неправильном положении с превышением пределов по загрузке

4

 

- неправильные методы погрузки-разгрузки (сбрасывание, перемещение волоком и т.п.)

6

2

Условия хранения:

 

 

- материалы защищены от вредных воздействий окружающей среды и хранятся в правильном положении

0

 

- материалы защищены от вредных воздействий окружающей среды, но хранятся в неправильном положении

1

 

- материалы не защищены от вредных воздействий

3

3

Условия обращения с материалами при производстве работ

 

 

- способы подготовки материалов к установке и обращение с ними во время технологических операций строго соответствуют требованиям СНиП по производству работ

0

 

- не соответствуют требованиям СНиП по производству работ

2

 

ГРУППА 5. КОНСТРУКТИВНО-ТЕХНОЛОГИЧЕСКИЕ ФАКТОРЫ

 

Данная группа выключает факторы (табл. П.5.26), отражающие влияние на вероятность аварии качества основных проектных решений. Здесь оценивается точность учета всех возможных нагрузок и воздействий на МН при расчете его конструкции.

 

Таблица П.5.26

 

Обозначение и наименование фактора влияния в пятой группе

Доля в группе, q5j

F51

Отношение фактической толщины стенки трубы к требуемой

0,35

F52

Усталость металла

0,3

F53

Возможность возникновения гидравлических ударов

0,15

F54

Системы телемеханики

0,2

 

 

 

Фактор F51: Отношение фактической толщины стенки трубы к требуемой

 

Расчетное значение толщины стенки МН dрасч сравнивается с наименьшим в пределах данного участка фактическим значением толщины стенки dфакт, полученным либо путем измерений, либо вычитанием максимального производственного допуска из номинального значения толщины стенки труб, уложенных на анализируемом участке нефтепровода. Итоговая балльная оценка рассчитывается через отношение dрасч/dфакт с помощью следующих формул:

при 1,0 < dрасч/dфакт £ 1,8

В51 = 22,5 - 12,5 × (dрасч/dфакт)

при dрасч/dфакт < 1,0

В51 = 10,

при dрасч/dфакт > 1,8

В51 = 10.

 

Фактор F52: Усталость металла

 

Балльная оценка данного фактора базируется на оценке степени "неблагоприятности" комбинации числа циклов нагружения, имевших место за все время эксплуатации анализируемого участка, и амплитуды этой нагрузки, выраженной в процентах от рабочего давления Рраб в нефтепроводе (табл. П.5.27).

 

Таблица П.5.27

 

Значения фактора F52 в зависимости от амплитуды нагрузки и числа циклов нагружения

Амплитуда нагрузки,

Число циклов нагружения в течение всего периода эксплуатации

% от Рраб

< 103

103 104

104 105

105 106

> 106

100

5,5

6,7

8,0

9,3

10

90

4,0

6,0

7,3

8,7

9,3

75

3,4

5,5

6,7

8,0

8,7

50

2,7

4,7

6,0

7,3

8,0

25

2,0

4,0

5,5

6,7

7,3

10

1,4

3,4

4,7

6,0

6,7

5

1

2,7

4,0

5,5

6,0

 

Фактор F53: Возможность возникновения гидравлических ударов

 

Степень влияния данного фактора на вероятность возникновения аварийной ситуации при перекачке жидких сред определяется вероятностью образования волн давления, превышающих рабочее давление в нефтепроводе Pраб более, чем на 10 %. Балльная оценка определяется по табл. П.5.28.

 

Таблица П.5.28

 

№. п/п

Наименование фактора F53

возможность возникновения гидравлических ударов

В53

1

Высокая вероятность гидравлических ударов (наличие на анализируемом участке запорной арматуры, насосов, высокая скорость жидкости; отсутствие устройств, предотвращающих гидроудары)

8

2

Средняя или низкая вероятность гидравлических ударов (параметры и скорость жидкости не исключают возможности возникновения волн давления, но опасности они не представляют, поскольку гасятся соответствующими устройствами — уравнительными резервуарами, предохранительными клапанами, устройствами медленного закрытия задвижек)

4

3

Низкая или нулевая вероятность гидравлических ударов (практически исключена возможность возникновения всплеска давления, превышающего на 10% Рраб)

0

 

 

 

Фактор F54: Системы телемеханики и автоматики

 

Степень влияния данного фактора на вероятность возникновения аварии вследствие повышения давления сверх допустимого уровня определяется тем, насколько полно (по охвату эксплуатационного участка), точно (по месту) и оперативно система обеспечивает дистанционное измерение давления в пределах РНУ, обеспечивает ли аварийную сигнализацию по давлению, автоматическое управление системами отключения перекачивающих агрегатов и соответствующей арматуры, включает ли подсистему предотвращения гидроударов (табл. П.5.29).

 

Таблица П.5.29

 

№ п/п

Наименование фактора F54 — системы телемеханики и автоматики

В54

1

Системы телемеханики и автоматики обеспечивают телеизмерение давления на НПС и линейной части МН в пределах эксплуатируемого участка, телесигнализацию положения линейных задвижек по трассе, аварийную сигнализацию и автоматическое отключение магистральных насосов (остановку перекачки) в случае недопустимого повышения давления. На нефтепроводах имеются системы гашения ударной волны и системы обнаружения утечек на участках нефтепровода

0

2

Системы телемеханики обеспечивают телеизмерение давления в пределах эксплуатируемого участка, телесигнализацию положения линейных задвижек по трассе, аварийную сигнализацию технологических параметров. Число баллов определяется надежностью системы

5

3

Система телемеханики отсутствует

10

 

ГРУППА 6. ПРИРОДНЫЕ ВОЗДЕЙСТВИЯ

 

В данной группе рассматриваются факторы влияния, связанные с природными воздействиями механического характера:

- повреждения МН при деформациях грунта, происходящих в форме обвалов, оползней, селевых потоков, термокарста, пучения грунта, солифлюкции;

- повреждения прямых и слабоизогнутых участков МН вследствие продольно-поперечного изгиба МН от действия термических сжимающих нагрузок с разрушением засыпки, полной потерей устойчивости изогнутого состояния и резким нарастанием прогибов и пластических деформаций в сечении нефтепровода;

- неравномерная осадка МН, которая более всего проявляется на наземных узлах разветвленной конфигурации (узлах подключения к НПС), линейной арматуре, камерах пуска и приема очистных устройств, береговых "гребенках" и на примыкающих к ним участках;

- размывы траншеи на подводном переходе МН, связанные с переформированием русла реки, и повреждения МН от гидродинамического воздействия потока.

Данная группа включает 4 фактора влияния (табл. П.5.30).

 

Таблица П.5.30

 

Обозначение и наименование фактора влияния в шестой группе

Доля в группе, q6j

F61

Вероятность перемещений грунта

0,2

F62

Несущая способность грунта

0,15

F63

Наличие на участке линейной арматуры и наземных узлов разветвленной конфигурации

0,15

F64

Проведение превентивных мероприятий

0,5

 

Фактор F61: Вероятность перемещений грунта или размыва подводного перехода

 

Балльная оценка определяется в соответствии с вероятностью перемещений грунта или размыва подводного перехода (табл. П.5.31). Категории участков МН при переходах через водные преграды принимается в соответствии с табл. 3* в [13].

 

Таблица П.5.31

 

№ п/п

Наименование фактора F61

вероятность перемещения грунта или размыва подводного перехода

B61

1

Высокая вероятность. Перемещения грунта являются обычным явлением, наблюдаются регулярные сдвиги и разрывы грунта, оползни, оседания, обвалы, пучения. Зоны сейсмической активности, зоны вечной мерзлоты, зоны шахтных разработок, горные районы. Подводный переход относится к 3 или 2 типу.

10

2

Средняя вероятность. Топография и типы грунта не исключают возможности перемещений грунта, однако значительные деформации грунта наблюдаются редко. Повреждений или недопустимых изменений положения МН по этой причине не зарегистрировано. Подводный переход относится к 2 типу.

5

3

Низкая вероятность. Перемещения грунта наблюдаются редко. Смещения и повреждения нефтепровода практически исключены. Подводный переход относится к 1 типу.

1

4

Никаких признаков, указывающих на потенциальную угрозу, связанную с перемещениями грунта, нет.

0

5

Информация о возможности перемещений грунта на подводном переходе отсутствует.

10

 

Фактор F62: Несущая способность грунта

 

Таблица П.5.32

 

№ п/п

Наименование фактора F62 — несущая способность грунта

В62

1

Низкая (торфяники — сильно и слаборазложившиеся; зоны болот; пески — пылеватые твердомерзлые и пылеватые с включениями гальки, гравия и валунов; супеси твердомерзлые — мало- и сильно льдистые)

10

2

Средняя (суглинки твердомерзлые - малольдистые и льдистые, суглинки с включениями гравия и гальки)

5

3

Нормальная (глины твердомерзлые - малольдистые и льдистые, глинистые сланцы с кварцевыми жилами, галечниковые грунты и супеси с включениями гравия и гальки)

2

 

Фактор F63: Наличие на участке линейной арматуры и наземных узлов

разветвленной конфигурации

 

Таблица П.5.33

 

№ п/п

Наименование фактора F63 — несущая способность грунта

В63

1

На участке присутствует надземный узел со сложной обвязкой и арматурой без фундамента

10

2

На участке присутствует сложный надземный узел с арматурой на фундаменте, рамная конструкция рассчитана с учетом рекомендаций современных нормативных документов

5

3

На участке присутствует линейная арматура без фундамента

7

4

На участке присутствует линейная арматура на фундаменте

3

5

Надземные сооружения отсутствуют

0

 

Фактор F64: Проведение превентивных мероприятий

 

К превентивным относятся:

1) Меры, обеспечивающие физическую защиту или ослабление напряжений в МН: заложение МН ниже глубины деформаций грунта (для подводных переходов — ниже предполагаемой глубины размыва), перенос участка трассы, устройство подпорных стенок на косогорах, установка компенсаторов, грунтовая разгрузка МН с помощью устройства параллельных траншей.

2) Меры по изменению свойств грунта, например осушение грунта с помощью систем дренажа.

3) Охлаждение перекачиваемого продукта на участках с вечной мерзлотой.

4) Проведение мониторинга деформаций грунта и перемещений нефтепровода.

Балльная оценка определяется тем, проводятся или нет предупредительные мероприятия на анализируемом участке трассы. В случае необходимости их проведения и рассчитывается как сумма балльных оценок 4 составляющих (табл. П.5.34).

 

Таблица П.5.34

 

т

Наименование составляющей т фактора F64

проведение превентивных мероприятий

1

Меры по ослаблению напряжений в МН:

 

 

- имели место (или не требуются)

0

 

- не имели места или неадекватны

2

2

Мероприятия по изменению свойств грунта:

 

 

- проводятся (или не требуются)

0

 

- не проводятся или проводятся неадекватно

1,5

3

Мониторинг деформаций грунта и перемещений нефтепровода:

 

 

- проводится постоянно с помощью, например, инженерно-сейсмометрических станций

0

 

- проводится визуально 2 раза в год (весной и осенью) с помощью неподвижных реперов на трассе

1

 

- не проводится или проводится редко

3

4

Обследование подводного перехода проводится:

 

 

- с периодичностью в соответствии с ПТЭ

0

 

- реже, чем требуется по ПТЭ

3

 

ГРУППА 7. ЭКСПЛУАТАЦИОННЫЕ ФАКТОРЫ

 

На возможность отказов во время работ, предусмотренных ПТЭ, влияет подготовка и слаженность работы персонала, выполнение инструкций, качество средств связи между персоналом НПС и диспетчером РНУ (АО МН) и другие факторы (табл. П.5.35).

 

Таблица П.5.35

 

Обозначение и наименование фактора влияния в седьмой группе

Доля в группе, q7j

F71

Эксплуатационная документация

0,2

F72

Периодичность контроля и ремонтов

0,25

F73

Качество профилактических работ и ремонта

0,25

F74

Качество связи

0,1

F75

Уровень обучения персонала

0,2

 

Фактор F71: Эксплуатационная документация

 

Балльная оценка данного фактора влияния определяется наличием у персонала ЛЭС и своевременным обновлением всей необходимой в соответствии с ПТЭ технической и оперативной документации по линейной части МН, а именно: схем обслуживаемых участков, технических паспортов на МН и подводные переходы, паспортов основного оборудования, производственных, должностных и противопожарных инструкций, инструкций по эксплуатации оборудования, инструкций на аварийную технику, журнала осмотра трассы, журнала регистрации ремонтных работ на трассе, журнала линейного ремонтера, технических актов на ликвидацию аварий и повреждений, оперативной документации по метанолу, плана сбора аварийной бригады, журнала учета выезда аварийных машин. Балльная оценка рассчитывается как сумма балльных оценок 3 составляющих (табл. П.5.36).

 

Таблица П.5.36

 

т

Наименование составляющей т фактора F71

эксплуатационная документация

1

Наличие необходимой документации:

 

 

- в наличии весь объем документации

0

 

- часть документации отсутствует

2

2

Внесение необходимых изменений и записей:

 

 

- необходимые изменения и записи вносятся незамедлительно

0

 

- изменения и записи вносятся с задержками

1,5

 

- изменения не вносятся

4

3

Пересмотр инструкций и схем:

 

 

- производится не реже 1 раза в 3 года

0

 

- производится реже, чем 1 раз в 3 года

2

 

Фактор F72: Периодичность контроля и ремонтов

 

Балльная оценка назначается в зависимости от степени соблюдения требуемого по ПТЭ графика проведения осмотров, контрольных операций, межремонтного обслуживания и ремонтов на линейной части МН (табл. П.5.37).

 

Таблица П.5.37

 

т

Наименование составляющей т фактора F72

эксплуатационная документация

1

В соответствии с ПТЭ

0

2

Ряд проверок и ремонтов проводится реже, чем требуется по ПТЭ

5

3

Требуемая периодичность не соблюдается систематически

10

 

Фактор F73: Качество профилактических работ и ремонта

 

Баллы назначаются в зависимости от качества проведенных на анализируемом участке нефтепровода профилактических работ или ремонтов из числа предусмотренных ПТЭ на различных технологических подсистемах и элементах линейной части, неисправность которых повышает вероятность аварийных утечек нефти из МН (трубы, изоляция, ЭХЗ, арматура, водопропускные сооружения) (табл. П.5.38).

 

Таблица П.5.38

 

т

Наименование составляющей т фактора F73

качество профилактических работ и ремонта

1

Хорошее

0

2

Удовлетворительное

5

3

Неудовлетворительное

10

 

Фактор F74: Качество связи

 

Баллы назначаются в зависимости от наличий и надежности средств связи между "полевым" персоналом (обходчиками, линейными ремонтниками) и диспетчером РПД (РНУ) (табл. П.5.39)

 

Таблица П.5.39

 

т

Наименование составляющей т фактора F74 — качество связи

1

Хорошее (радиосвязь)

0

2

Удовлетворительное (стационарный телефон, например, в доме обходчика)

5

3

Неудовлетворительное (связь неисправна или отсутствует)

10

 

Фактор F75: Уровень обучения персонала

 

Квалификация персонала определяется наличием и уровнем программ обучения и тестирования. Балльная оценка данного фактора рассчитывается по формуле:

,

где балльная оценка фактора  назначается из табл. П.5.40.

 

Таблица П.5.36

 

т

Наименование составляющей т фактора F75

уровень обучения персонала

1

Курсовое обучение нового персонала и повышение квалификации, изучаемые предметы:

 

 

- характеристики продукта

0,5

 

- напряжения в стенке нефтепровода

0,5

 

- коррозия нефтепровода

0,5

 

- технология и управление

0,5

 

- устройство и работа оборудования

1

 

- устранение отказов

1

 

- ПТЭ, ПТБ, производственные и должностные инструкции

1

 

- проведение противоаварийных и противопожарных тренировок на рабочих местах

1

2

Повторные циклы обучения

2

3

Требуемое периодическое тестирование персонала

2

 

ГРУППА 8. ДЕФЕКТЫ ТЕЛА ТРУБЫ И СВАРНЫХ ШВОВ

 

В данную группу входят 3 фактора (табл. 5.41), отражающие контроль (диагностику) состояния МН с помощью внутритрубных инспекционных снарядов (ВИС). Учитываются время, прошедшее после последней диагностики, принятые меры, количество (плотность) и опасность дефектов трубы (гофры, вмятины, потери металла, расслоения, трещины и др.), обнаруженные с помощью ВИС.

"Опасность" дефектов (т. е. способность дефектов реально снижать несущую способность трубы) определяется расчетным путем по нормативам АК "Транснефть" и ОАО ЦТД "Диаскан" [22, 23, 24], согласованным с Госгортехнадзором России. "Опасные" дефекты подлежат ремонту. До проведения ремонта допускается эксплуатация участка МН с пониженным давлением.

 

Таблица П.5.41

 

Обозначение и наименование фактора влияния в восьмой группе

Доля в группе, q8j

F81

Количество "опасных" дефектов на участке трассы

0,3

F82

Количество "неопасных" дефектов

0,2

F83

Диагностика

0,5

 

Фактор F81: Количество опасных дефектов

 

Оценка фактора F81, связанного со средним количеством (плотностью) "опасных" дефектов, обнаруженных ВИС на 1 км участка, определяется по табл. П.5.42).

 

 

 

 

 

 

Таблица П.5.42

 

№ п/п

Наименование фактора F81 — количество "опасных" дефектов на 1 км

В81

1

> 10

10

2

От 1 до 10

7

3

От 0,1 до 1

3

4

< 0,1

1

5

"Опасных" дефектов не обнаружено

0

 

Фактор F82: Количество неопасных дефектов

 

Оценка фактора F82, связанного со средним количеством "неопасных" дефектов, обнаруженных ВИС на 1 км участка, определяется по табл. П.5.43).

 

Таблица П.5.43

 

№ п/п

Наименование фактора F82 — количество "неопасных" дефектов на 1 км

В82

1

> 50

10

2

От 30 до 50

7

3

От 10 до 30

3

4

< 10

1

5

"Неопасных" дефектов не обнаружено

0

 

Фактор F83: Диагностика

 

Балльная оценка этого фактора определяется по одной из формул в зависимости от количества лет tсн, прошедших со дня последнего пропуска ВИС:

при tсн £ 5

В83 = tсн × (1-2 × a/2,3 × tсн)

при 10 ³ tсн >5

В83 = tсн

при tсн > 10

В83 = 10,

где параметр a для различных типов ВИС приведен в табл. П.5.44 для случаев обнаружения "неопасных" и "опасных" дефектов.

При эксплуатации участка нефтепровода с неустраненными "опасными" дефектами В83 = 10.

 

Таблица П.5.44

 

Значения коэффициента a в зависимости от вида дефектов и типа ВИС

Вид дефекта

“Калипер”

“Ультраскан-WM”

Магнитный дефектоскоп

Ультразвуковой “CD”

Другие типы

"Неопасные" дефекты

0,1

0,5

0,3

0,5

0,2

"Опасные" дефекты

0,05

0,25

0,15

0,25

0,1

 

 

ПРИЛОЖЕНИЕ 6

 

УДЕЛЬНЫЙ ЭКОЛОГИЧЕСКИЙ УЩЕРБ ОТ ЗАГРЯЗНЕНИЯ

ОКРУЖАЮЩЕЙ ПРИРОДНОЙ СРЕДЫ НЕФТЬЮ

 

Удельный экологический ущерб оценивается как ожидаемая сумма штрафов в расчете на 1 т нефти, разлившейся при аварии нефтепровода. Расчеты удельного экологического ущерба произведены на основе [8]. Метод расчета приведен в [11].

Территория Российской Федерации, на которой размещены магистральные нефтепроводы, разделена на районы (рис.П.6.1). Индекс района состоит из арабской цифры (всего выделено пять типов районов, обозначенных цифрами от 1 до 5). Каждый тип района характеризуется определенными значениями удельного экологического ущерба от загрязнения водных объектов, почвы и атмосферы (табл. П.6.1).

Рис. П.6.1. Схема районирования территории расположения магистральных нефтепроводов

в Российской Федерации по показателям удельного экологического ущерба

 

Таблица П.6.1

 

Удельный экологический ущерб от загрязнения природных сред нефтью в ценах 1997 г.

Показатель удельного

Индекс района на схеме (рис. П.6.1)

экологического ущерба

1

2

3

4

5

, тыс. руб/т

1440

1440

1440

1500

1740

, тыс. руб/т

480

780

900

900

900

, тыс. руб/т

420

420

480

480

480

+ , тыс. руб/т

1920

2220

2340

2400

2640

 

Примечание: , ,   удельный экологический ущерб (в расчете на 1 т потерянной нефти) соответственно от загрязнения поверхностных вод, почвы и атмосферы.

 

 

ПРИЛОЖЕНИЕ 7

 

ПЕРИОД ЕСТЕСТВЕННОГО ВОССТАНОВЛЕНИЯ ПОЧВЕННО-РАСТИТЕЛЬНОГО ПОКРОВА И ВОДНЫХ ОБЪЕКТОВ

ПОСЛЕ НЕФТЯНОГО ЗАРАЖЕНИЯ

 

Продолжительность периода естественного восстановления загрязненных земель tсвз, лет, оценивается по скорости восстановления растительности на загрязненной нефтью территории по [14] (с изменениями [11]).

Продолжительность периода естественного восстановления водных объектов tсвр, лет, оценивается по скорости естественного восстановления водотоков по [1] (с изменениями).

Рис. П.7.1. Схема районирования территории расположения магистральных нефтепроводов

в Российской Федерации по времени естественного восстановления почвенно-растительного покрова tсвз и водных объектов tсвр после нефтяного загрязнения

 

Территория Российской Федерации, на которой размещены магистральные нефтепроводы, разделена на районы (рис. П.7.1). Индекс района состоит из цифры и буквы, например, 5Б, где цифра соответствует диапазону значений продолжительности периода естественного восстановления почвенно-растительного покрова, буква — периоду восстановления водных объектов (табл. П.7.1).

 

Таблица П.7.1

 

Продолжительность периода естественного восстановления почвенно-растительного

покрова и водных объектов, лет (к рис. П.7.1)

Почвенно-растительный покров

Водные объекты

Обозначение района на схеме

1

2

3

4

5

6

А

Б

В

Г

2,5

7,5

15,0

20,0

25,0

30,0

0,5

10

12

37

 

 

ПРИЛОЖЕНИЕ 8

 

ПРИМЕРЫ ОЦЕНКИ ПОКАЗАТЕЛЕЙ РИСКА

 

ПРИМЕР 1. РАСЧЕТ ПАРАМЕТРОВ АВАРИЙНОГО ИСТЕЧЕНИЯ НЕФТИ

ИЗ ТРУБОПРОВОДА

 

Метод расчета параметров истечения нефти из трубопровода приведен в приложении 3. Результаты численного расчета истечения нефти из трубопровода Сургут—Полоцк D = 1000 мм при аварии на одном из перегонов между НПС представлены на рис. П.8.1. Время отключения насосов и перекрытия задвижек — 15 мин после начала истечения. Расстояние между НПС — 100 км, месторасположение разрыва — посередине (50 км от НПС). Начальное давление при нагнетании верхней по потоку НПС — 5,5 МПа, на входе в нижнюю НПС — 0,8 МПа.

 

Рис. П.8.1. Зависимость интенсивности аварийного истечения (расхода) нефти

от времени начала истечения при образовании трещины протяженностью

Lp =0,3D (кривая 1), Lp = 0,75D (кривая 2), Lp = 1,5D (кривая 3).

 

Максимум аварийного расхода при Lp = 0,3D составляет 200¸280 кг/с, при Lp = 0,75D - 1000¸1400 кг/с, а при Lp = 1,5D - 2780¸3600 кг/с Отметим, что значение максимальных расходов из дефектного отверстия заметно выше расхода при перекачке нефти в эксплуатационном режиме (600-1000 кг/с).

Расход при самотечном истечении значительно меньше соответствующего расхода при напорном истечении и зависит от размеров аварийной щели и профиля трассы. Так, максимум расхода самотечного истечения в 3¸4 раза меньше максимума напорного истечения при диаметре отверстия Lp = 0,3D, в 1,5¸50 раз меньше при Lp =0,75D, и в 2¸20 раз меньше при        Lp = 1,5D.

Время полного опорожнения аварийного участка определяется временем реакции диспетчерской службы, диаметром трубы, расположением аварийного сечения относительно перекрывающихся линейных задвижек и размерами аварийной щели. При Lp = 0,3D время полного опорожнения составляет 28¸40 ч, Lp = 0,75D - 1,3¸16,3 ч; при Lp = 1,5D - 0,5¸4,4 ч.

 

ПРИМЕР 2. ОЦЕНКА ПОКАЗАТЕЛЕЙ РИСКА

 

В табл. П.8.1, П.8.2 в качестве примера даны характеристика исходных данных и результаты оценки риска для трех участков (2098 — 2100 км) нефтепровода D = 1000 мм. Коэффициент влияния Kвл = ln/lc. показывает во сколько раз локальная частота ln на данном участке отличается от средней частоты по трассе lc, которая соответствует 0,16 аварий в год на 1000 км.

 

 

 

 

 

 

 

 

Исходная информация и расчет коэффициента влияния Kвл

 

Таблица П.8.1

 

x, км

Н, м

П

K

ГЛФ

C

Б

N, тыс руб/га

R, км

P

З

РП, м

ВП, м

АД, м

Kвл

2098

144,9

0

0

1

0

0

133

0

0

0

200

0

0

1,561

2099

155,7

0

0

1

0

0

133

0

0

1

0

0

0

0,718

2100

140,5

1

0

0

0

0

152

0,55

63

0

0

0

0

1,124

 

Обозначения в табл. П.8.1: x — расстояние вдоль трассы, км; Н — нивелирная высота трассы, м; П — наличие пашни на данном участке трассы; K кормовые угодья; ГЛФ — гослесфонд; С — садовые участки; Б — болото; N — норматив стоимости земель, тыс. руб/га;      R — расстояние до населенного пункта, км; Р — количество жителей; З — наличие и тип арматуры и оборудования МН; РП — длина речного перехода, м; ВП — длина воздушного перехода, м; АД — длина подземного перехода под авто- и железными дорогами, м.

Результаты расчета ожидаемых объемов потерь нефти и экологического ущерба для каждого участка МН (общая протяженность трассы 141 км) представлены ниже.

 

Пример расчета объемов разлива нефти и показателей риска

(обозначения — на рис. П.3.1)

Таблица П.8.2

 

Параметры

Расстояние вдоль трассы x, км

 

2098

2099

2100

Vн(1), т

271,8

270,3

268,9

Vн(2), т

1087,1

1081,4

1075,6

Vн(3), т

429,4

427,7

426,1

Vн(4), т

963,0

958,4

953,7

Vн(5), т

1107,0

1099,5

1092,1

Vн(6), т

2243,6

2226,3

2209,1

Vо(1) при Lp =0,3D, т

75,2

0

95,4

Vо(1) при Lp =0,75D, т

400,4

0

477,6

Vо(1) при Lp =1,5D, т

638,6

0

638,6

Vо(2)

638,6

0

638,6

Kсб

0,83

0,83

0,80

Мз, т

169,7

107,4

203,7

ln, аварий/(1000 км × год)

0,244

0,112

0,175

Ущерб за загрязнение атмосферы, руб.

13

8

15

Ущерб за загрязнение земель, руб./км2

430029

286117

577977

Ущерб за загрязнение водных объектов, руб./км2

5727900

0

0

Суммарный экологический ущерб, руб.

783221

286117

577977

Экологический риск Rd, руб./(год × км)

191

32

101

 

Величина компенсационных выплат за ущерб окружающей среде оценивалась по нормативам Госкомэкологии России [3] и Методике АК "Транснефть" [8] (см. пример 3).

Оценки показывают, что основной вклад в экологический риск дает загрязнение водных объектов и земель.

Из рис. П.8.4 следует, что более 70% протяженности нефтепроводов соответствует уровню риска не более 400 руб./(год × км). Уровню риска менее 100 руб./(год × км), который может рассматриваться как приемлемый (см. табл. П.4.1), соответствует 51% длины нефтепроводов. Максимальные экологические ущербы (более 6 тыс. руб. на 1 км трассы в год) возможны на переходах через водные объекты. Доля участков с повышенным значением экологического риска (более 1 тыс. руб. на 1 км трассы в год) составляет 1,41%.

Интегральные показатели риска для трассы длиной 141 км приведены в табл. П.8.3. Вероятность возникновения аварии на всей трассе соответствует периоду возникновения одной аварии, равному 44 годам. От одной аварии в среднем потери нефти составят 286 т, экологический ущерб — 1,1 млн. руб. (в ценах 1998 г.).

Согласно критериям табл. П.4.1 настоящего руководства данный участок относится к «средней» степени риска.

Знание локальных значений показателей риска полезно для планирования мер безопасности различных участков трассы (очередность обследования, ремонта и т. д.). Интегральные показатели риска могут быть использованы для сравнения опасности различных трасс, оценки объема средств, необходимых для обеспечения безопасности (финансовое обеспечение, выделение средств для ликвидации разливов нефти, страхование и т. д.).

 

Рис. П.8.2. Распределение среднего (по сценариям аварий) количества нефти Мз(x), загрязняющей почву или водоемы в результате аварий на трассе типичного МН

 

 

Рис. П.8.3. Распределение экологического риска Rd(x) вдоль типичного МН

 

 

Рис. П.8.4. Распределение доли длин участков МН

по уровням ожидаемого экологического ущерба Rd

 

Интегральные показатели риска по трассе нефтепровода

 

Таблица П.8.3

 

Наименование показателя риска

Значение показателя риска

Средняя интенсивность возникновения аварии lc, аварий/(1000 км × год)

0,16

Частота (вероятность) возникновения аварии на трассе в год

0,022

Интегральный экологический риск, тыс. руб/год

24

Средний размер экологического ущерба, руб/(км × год)

170

Интегральное по трассе ожидаемое количество разлива нефти, т/год

6,3

Среднее по трассе ожидаемое количество разлива нефти

44

 

ПРИМЕР 3. ОЦЕНКА ЭКОЛОГИЧЕСКОГО УЩЕРБА

 

Экологический ущерб, определяемый в настоящем методическом руководстве величиной компенсационных выплат за ущерб окружающей среде, оценивался согласно Приложению 3 и нормативам в [3, 8].

Оценка ущерба от загрязнения земель нефтью по формуле:

,                                    (П.8.1)

где Сз — размер платы за загрязнение земель нефтью, тыс. руб; Нбзнорматив стоимости земель, тыс.руб/га; Kвз коэффициент пересчета в зависимости от периода времени восстановления загрязненных земель, согласно приложению 7 или информации территориальных природоохранных органов; Kэз —коэффициент экологической ситуации и экологической значимости территории рассматриваемого экономического района; Kз коэффициент пересчета в зависимости от степени загрязнения земель; Kгз коэффициент пересчета в зависимости от глубины загрязнения земель, Sз площадь загрязнения земель определяемая по формуле:

,                                                     (П.8.2)

где Мз масса загрязнения, т; r = 0,83 т/м3 — плотность нефти.

Оценка ущерба от загрязнения водных объектов нефтью по формуле:

,                                            (П.8.3)

где Ср ущерб от загрязнения водного объекта, тыс. руб; Ku коэффициент индексации; Kэр коэффициент экологической ситуации и экологической значимости состояния водных объектов; Нбр — базовый норматив, руб/т; Мрз масса нефти загрязняющей водный объект, т.

Экологический риск оценивается по формуле:

,                                                    (П.8.4)

где Ср ущерб от загрязнения водного объекта, тыс. руб; lс — частота аварий, ав./год × км.

Расчеты ущерба и риска при загрязнении земель и водных объектов, расположенных на территории Калмыкии, Астраханской области, Ставропольского края и Краснодарского, приведены соответственно в табл. П.8.4 и табл. П.8.5.

 

Таблица П.8.4

 

Наименования коэффициентов, входящих

Значения коэффициентов и ущерба

в зависимости от вида загрязненных земель

в формулу (П.8.2)

пашни, сады

пашни, сады

пашни

лес

Мз, т

209,2

187,4

1014,5

148,1

Нбз, тыс. руб/га

33

33

211

199

Kвз

1,7

1,7

1,7

3,8

Sз, м2

7312,19

6629,98

29806,57

5377,02

Kэз

1,9

1,9

1,9

1,9

Kз

2

2

2

2

Kгз

1

1

1

1

Сз, тыс. руб

155881

141338

4062814

1545119

 

Таблица П.8.5

 

Наименования коэффициентов,

входящих в формулу (П.8.3)

Значения коэффициентов и экологического риска

для водных объектов

 

Волга

Кубань

Ku

42

42

Kэр

1,31

1,49

Нбр, руб/т

221,75

221,75

Мрз

351,8

532,5

Частота аварий, 1/(год × км)

0,379 × 10-3

0,491 × 10-3

Экологический риск, руб/(год × км)

8133

17771

 

ПРИМЕР 4. РАСЧЕТ ОЖИДАЕМОГО ЭКОЛОГИЧЕСКОГО УЩЕРБА

 

В данном примере представлен расчет экологического ущерба по приближенным соотношениям [10], представленным в приложении 6. Данный метод расчета следует использовать при отсутствии точных сведений о состоянии компонентов окружающей природной среды, которые могут быть загрязнены.

Рассмотрим участок МН длиной 1 км, расположенный в окрестностях г. Тобольск. Пусть величина ожидаемых среднегодовых потерь товарной нефти за счет аварийных разливов, рассчитанная в соответствии с приложением 4, составляет Rv = 0,85 м3/год.

Значение удельного экологического ущерба , ,  определяем по схеме рис. П.6.1, табл. П.6.1 приложения 6. С учетом расположения анализируемого участка нефтепровода около г, Тобольск получаем значения удельного ущерба (в ценах 1997 г.)          = 1440 тыс. руб/т,  = 780 тыс. руб/т,  = 0,420 тыс. руб/т. Подставляя значения удельного ущерба в формулы (П.4.7-П.4.9), получаем значения частного экологического ущерба  = 1040,4 тыс. руб/год,  = 563,6 тыс. руб/год,  = 0,30 тыс. руб/год.

Суммируя значения ущербов, получаем итоговое значение ожидаемого экологического ущерба на данном участке Rd = 1604,3 тыс. руб/год.

 

СОДЕРЖАНИЕ

 

Введение

1. Общие положения

2. Термины и определения, сокращения и условные обозначения

2.1. Термины и определения

2.2. Используемые сокращения

2.3. Основные условные обозначения

3. Методология оценки степени риска аварий на магистральных нефтепроводах

4. Этапы оценки степени риска аварий на магистральных нефтепроводах

5. Список используемых источников

Приложение 1. Исходная информация, необходимая для оценки степени риска

Приложение 2. Оценка частоты разгерметизации магистрального нефтепровода

Приложение 3. Расчет объемов разлива нефти и площадей загрязнения при авариях

Приложение 4. Оценка показателей риска аварийных разливов на магистральных нефтепроводах

Приложение 5. Балльная оценка факторов влияния состояния нефтепровода на степень риска

Приложение 6. Удельный экологический ущерб от загрязнения окружающей среды нефтью

Приложение 7. Период естественного восстановления почвенно-растительного покрова и водных объектов после нефтяного загрязнения

Приложение 8. Примеры оценки показателей риска